[1]
|
elahi, n., kamali, m. and baghersad, m.h. (2018) recent biomedical applications of gold nanoparticles: a review. talanta, 184, 537-556.
|
[2]
|
mayer, k.m. and hafner, j.h. (2011) localized surface plasmon resonance sensors. chemical reviews, 111, 3828-3857.
|
[3]
|
zhou, x., liu, r., qin, s., et al. (2016) current status and future direc-tions of nanoparticulate strategy for cancer immunotherapy. current drug metabolism, 17, 755-762.
|
[4]
|
chen, y., xianyu, y. and jiang, x. (2017) surface modification of gold nanoparticles with small molecules for biochemical analysis. accounts of chemical research, 50, 310-319.
|
[5]
|
alex, s. and tiwari, a. (2015) functionalized gold nanoparticles: synthesis, properties and applications—a review. journal of nanoscience and nanotechnology, 15, 1869-1894.
|
[6]
|
qian, h., zhu, m., wu, z. and jin, r.c. (2012) quantum sized gold nanoclusters with atomic precision. accounts of chemical research, 45, 1470-1479.
|
[7]
|
yuan, q., wang, y., zhao, l., et al. (2016) peptide protected gold clus-ters: chemical synthesis and biomedical applications. nanoscale, 8, 12095-12104.
|
[8]
|
chen, x., ren, x. and gao, x. (2022) peptide or protein-protected metal nanoclusters for therapeutic application. chinese journal of chemistry, 40, 267-274.
|
[9]
|
tabatabaei, m.s., islam, r. and ahmed, m. (2021) applications of gold nanoparticles in elisa, pcr, and immuno-pcr assays: a review. analytica chimica acta, 1143, 250-266.
|
[10]
|
kesharwani, p., ma, r., sang, l., et al. (2023) gold nanoparticles and gold nanorods in the landscape of cancer therapy. molecular cancer, 22, article no. 98.
|
[11]
|
kumar, a., zhang, x. and liang, x.j. (2013) gold nanoparti-cles: emerging paradigm for targeted drug delivery system. biotechnology advances, 31, 593-606.
|
[12]
|
pasparakis, g. (2022) recent developments in the use of gold and silver nanoparticles in biomedicine. nanomedicine and nanobiotechnology, 14, e1817.
|
[13]
|
dasgupta, n. and ranjan, s. (2018) an introduction to food grade nanoemulsions. springer, singapore.
|
[14]
|
rasmi, y., kırboğa, k.k., khan, j., et al. (2023) gold nanoparti-cle-based strategies against sars-cov-2: a review. reviews on advanced materials science, 62, article id: 20230105.
|
[15]
|
jans, h. and huo, q. (2012) gold nanoparticle-enabled biological and chemical detection and analysis. chemical society reviews, 41, 2849-2866.
|
[16]
|
draz, m.s. and shafiee, h. (2018) applications of gold nanoparticles in virus detection. theranostics, 8, 1985-2017.
|
[17]
|
wang, j., drelich, a.j., hopkins, c.m., et al. (2022) gold nanoparticles in virus detection: recent advances and potential considerations for sars-cov-2 testing development. nanomedi-cine and nanobiotechnology, 14, e1754.
|
[18]
|
li, h. and rothberg, l. (2004) colorimetric detection of dna sequences based on electrostatic interactions with unmodified gold nanoparticles. proceedings of the national academy of sci-ences of the united states of america, 101, 14036-14039.
|
[19]
|
shawky, s.m., awad, a.m., allam, w., et al. (2017) gold aggregating gold: a novel nanoparticle biosensor approach for the direct quantification of hepatitis c virus rna in clinical samples. biosensors and bioelectronics, 92, 349-356.
|
[20]
|
lim, j., nam, j., yang, s., et al. (2015) identification of newly emerging influenza viruses by surface-enhanced raman spectroscopy. analytical chemistry, 87, 11652-11659.
|
[21]
|
zhang, h., liu, l., li, c.w., et al. (2011) multien-zyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using au nano-particle probes and quantum dots as labels. biosensors and bioelectronics, 29, 89-96.
|
[22]
|
wang, h., feng, n., yang, s., et al. (2010) a rapid immuno-chromatographic test strip for detecting rabies virus antibody. journal of virological methods, 170, 80-85.
|
[23]
|
huang, c., wen, t., shi, f.j., et al. (2020) rapid detection of igm antibodies against the sars-cov-2 virus via colloidal gold nanoparticle-based lateral-flow assay. acs ome-ga, 5, 12550-12556.
|
[24]
|
kim, j., oh, s.y., shukla, s., et al. (2018) heteroassembled gold nanoparticles with sandwich-immunoassay lspr chip format for rapid and sensitive detection of hepatitis b virus surface antigen (hbsag). biosensors and bioelectronics, 107, 118-122.
|
[25]
|
kurdekar, a.d., avinash chunduri, l.a., manohar, c.s., et al. (2018) streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of hiv infection. science advances, 4, eaar6280.
|
[26]
|
ventura, b.d., cennamo, m., minopoli, a., et al. (2020) colorimetric test for fast detection of sars-cov-2 in nasal and throat swabs. acs sensors, 5, 3043-3048.
|
[27]
|
armesto, m., charconnet, m., marimón, j.m., et al. (2023) vali-dation of rapid and economic colorimetric nanoparticle assay for sars-cov-2 rna detection in saliva and naso-pharyngeal swabs. biosensors, 13, article 275.
|
[28]
|
trépo, c., chan, h.l.y. and lok, a. (2014) hepatitis b virus infec-tion. lancet, 384, 2053-2063.
|
[29]
|
dehaan, e., mcgowan, j.p., fine, s.m., et al. (2022) pep to prevent hiv infection. johns hopkins university, baltimore.
|
[30]
|
kurdekar, a., chunduri, l.a.a., bulagonda, e.p., et al. (2016) comparative performance evaluation of carbon dot-based paper immunoassay on whatman filter paper and nitrocellulose paper in the detection of hiv infection. microfluidics and nanofluidics, 20, article no. 99.
|
[31]
|
jain, p.k., huang, w. and el-sayed, m.a. (2007) on the uni-versal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equa-tion. nano letters, 7, 2080-2088.
|
[32]
|
han, m.s., byun, j.h., cho, y. and rim, j.h. (2021) rt-pcr for sars-cov-2: quantitative versus qualitative. lancet infectious diseases, 21, 165.
|
[33]
|
pashine, a., valiante, n.m. and ulmer, j.b. (2005) target-ing the innate immune response with improved vaccine adjuvants. nature medicine, 11, s63-s68.
|
[34]
|
wilson-welder, j.h., torres, m.p., kipper, m.j., et al. (2009) vaccine adju-vants: current challenges and future approaches. journal of pharmaceutical sciences, 98, 1278-1316.
|
[35]
|
shi, s., zhu, h., xia, x., et al. (2019) vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. vaccine, 37, 3167-3178.
|
[36]
|
dykman, l.a. and khlebtsov, n.g. (2017) immunological properties of gold nanoparticles. chemical science, 8, 1719-1735.
|
[37]
|
liu, y., crawford, b.m. and vo-dinh, t. (2018) gold nanoparticles-mediated photothermal therapy and immunotherapy. immunotherapy, 10, 1175-1188.
|
[38]
|
salazar-gonzález, j.a., gonzá-lez-ortega, o. and rosales-mendoza, s. (2015) gold nanoparticles and vaccine development. expert review of vac-cines, 14, 1197-1211.
|
[39]
|
de almeida, r.r., paim, b., de oliveira, s.a., et al. (2017) dengue hemorrhagic fever: a state-of-the-art review focused in pulmonary involvement. lung, 195, 389-395.
|
[40]
|
bhatt, s., gething, p.w., brady, o.j., et al. (2013) the global distribution and burden of dengue. nature, 496, 504-507.
|
[41]
|
wahala, w.m.p.b., kraus, a.a., haymore, l.b., et al. (2009) dengue virus neutralization by human immune sera: role of envelope protein domain iii-reactive antibody. virology, 392, 103-113.
|
[42]
|
fahimi, h., mohammadipour, m., haddad kashani, h., et al. (2018) dengue viruses and promising envelope protein domain iii-based vaccines. applied microbiology and bio-technology, 102, 2977-2996.
|
[43]
|
villar, l., dayan, g.h., arredondo-garcía, j.l., et al. (2015) ef-ficacy of a tetravalent dengue vaccine in children in latin america. new england journal of medicine, 372, 113-123.
|
[44]
|
quach, q.h., ang, s.k., chu, j.h.j. and kah, j.c.y. (2018) size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. acta bio-materialia, 78, 224-235.
|
[45]
|
halstead, s.b. (2017) dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. vaccine, 35, 6355-6358.
|
[46]
|
awadasseid, a., wu, y., tanaka, y. and zhang, w. (2021) current advances in the development of sars-cov-2 vaccines. international journal of biological sciences, 17, 8-19.
|
[47]
|
chen, d.y., chin, c.v., kenney, d., et al. (2023) spike and nsp6 are key determinants of sars-cov-2 omicron ba.1 attenuation. nature, 615, 143-150.
|
[48]
|
aguilar-bretones, m., fouchier, r.a., koopmans, m.p., et al. (2023) impact of antigenic evolution and original antigenic sin on sars-cov-2 immunity. journal of clinical inves-tigation, 133, e162192.
|
[49]
|
fan, b., gu, j., deng, b., et al. (2023) positively charged-amylose-entangled au-nanoparticles acting as protein carriers and potential adjuvants to sars-cov-2 subunit vaccines. acs applied materials & interfaces, 15, 29982-29997.
|
[50]
|
bayani, f., hashkavaei, n.s., arjmand, s., et al. (2023) an overview of the vaccine platforms to combat covid-19 with a focus on the subunit vaccines. progress in biophysics and mo-lecular biology, 178, 32-49.
|
[51]
|
niikura, k., matsunaga, t., suzuki, t., et al. (2013) gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. acs nano, 7, 3926-3938.
|
[52]
|
polack, f.p., thomas, s.j., kitchin, n., et al. (2020) safety and efficacy of the bnt162b2 mrna covid-19 vaccine. new england journal of medicine, 383, 2603-2615.
|
[53]
|
tanriover, m.d., doğanay, h.l., akova, m., et al. (2021) efficacy and safety of an inactivated whole-virion sars-cov-2 vaccine (coronavac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in turkey. lancet, 398, 213-222.
|
[54]
|
knoll, m.d. and wonodi, c. (2021) oxford-astrazeneca covid-19 vaccine efficacy. lancet, 397, 72-74.
|
[55]
|
song, j.y., choi, w.s., heo, j.y., et al. (2022) safety and immunogenicity of a sars-cov-2 recombinant protein nanoparticle vaccine (gbp510) adjuvanted with as03: a randomised, placebo-controlled, observer-blinded phase 1/2 trial. eclinicalmedicine, 51, article id: 101569.
|
[56]
|
dreaden, e.c., austin, l.a., mackey, m.a. and el-sayed, m.a. (2012) size matters: gold nanoparticles in targeted cancer drug delivery. therapeutic delivery, 3, 457-478.
|
[57]
|
goddard, z.r., marín, m.j., russell, d.a. and searcey, m. (2020) active targeting of gold nanoparticles as cancer therapeutics. chemical society reviews, 49, 8774-8789.
|
[58]
|
yazdanpanah, y., fagard, c., descamps, d., et al. (2009) high rate of virologic suppression with raltegravir plus etravirine and darunavir/ritonavir among treatment-experienced patients infected with multidrug-resistant hiv: results of the anrs 139 trio trial. clinical infectious diseases, 49, 1441-1449.
|
[59]
|
chun, t.w., moir, s. and fauci, a.s. (2015) hiv reservoirs as obstacles and opportunities for an hiv cure. nature immunology, 16, 584-589.
|
[60]
|
garrido, c., simpson, c.a., dahl, n.p., et al. (2015) gold nanoparticles to improve hiv drug delivery. future medicinal chemistry, 7, 1097-1107.
|
[61]
|
kalimuthu, k., lubin, b.c., bazylevich, a., et al. (2018) gold nanoparti-cles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. journal of nanobiotech-nology, 16, article no. 34.
|
[62]
|
fratoddi, i., venditti, i., battocchio, c., et al. (2019) highly hy-drophilic gold nanoparticles as carrier for anticancer copper(i) complexes: loading and release studies for biomedi-cal applications. nanomaterials, 9, article 772.
|
[63]
|
fotooh abadi, l., kumar, p., paknikar, k., et al. (2023) tenofo-vir-tethered gold nanoparticles as a novel multifunctional long-acting anti-hiv therapy to overcome deficient drug delivery-: an in vivo proof of concept. journal of nanobiotechnology, 21, article no. 19.
|
[64]
|
bowman, m.c., ballard, t.e., ackerson, c.j., et al. (2008) in-hibition of hiv fusion with multivalent gold nanoparticles. journal of the american chemical society, 130, 6896-6897.
|
[65]
|
li, f., huang, q., zhou, z., et al. (2023) gold nanoparticles combat enveloped rna virus by affecting organelle dynamics. signal transduction and targeted therapy, 8, article no. 285.
|
[66]
|
sung, h., ferlay, j., siegel, r.l., et al. (2021) global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. ca: a cancer journal for clinicians, 71, 209-249.
|
[67]
|
jit, m., prem, k., benard, e. and brisson, m. (2021) from cervical cancer elimination to eradication of vaccine-type human papillomavirus: feasibility, public health strategies and cost-effectiveness. preventive medicine, 144, article id: 106354.
|
[68]
|
valencia-reséndiz, d.g., villegas, a., bahena, d., et al. (2022) non-functionalized gold nanoparticles inhibit human papillomavirus (hpv) infection. international journal of molec-ular sciences, 23, article 7552.
|
[69]
|
giroglou, t., florin, l., schäfer, f., et al. (2001) human papilloma-virus infection requires cell surface heparan sulfate. journal of virology, 75, 1565-1570.
|
[70]
|
yan, f.f. and gao, f. (2021) an overview of potential in-hibitors targeting non-structural proteins 3 (plpro and mac1) and 5 (3clpro/mpro) of sars-cov-2. computational and structural biotechnology journal, 19, 4868-4883.
|
[71]
|
su, h., zhou, f., huang, z., et al. (2021) molecular insights into small-molecule drug discovery for sars-cov-2. angewandte chemie, 60, 9789-9802.
|
[72]
|
he, z., ye, f., zhang, c., et al. (2022) a comparison of remdesivir versus gold cluster in covid-19 animal model: a better therapeutic outcome of gold cluster. nano today, 44, ar-ticle id: 101468.
|
[73]
|
mehta, p., mcauley, d.f., brown, m., et al. (2020) covid-19: consider cytokine storm syndromes and immunosuppression. lancet, 395, 1033-1034.
|
[74]
|
lv, t., cao, w. and li, t. (2021) hiv-related immune ac-tivation and inflammation: current understanding and strategies. journal of immunology research, 2021, article id: 7316456.
|
[75]
|
yang, g., wan, p., zhang, y., et al. (2022) innate immunity, inflammation, and intervention in hbv infection. viruses, 14, article 2275.
|
[76]
|
yuan, q., gao, f., yao, y., et al. (2019) gold clusters prevent inflamma-tion-induced bone erosion through inhibiting the activation of nf-κb pathway. theranostics, 9, 1825-1836.
|
[77]
|
liu, y., meng, c., li, y., et al. (2023) peptide-protected gold nanoclus-ters efficiently ameliorate acute contact dermatitis and psoriasis via repressing the tnf-α/nf-κb/il-17a axis in keratinocytes. nanomaterials, 13, article 662.
|
[78]
|
yañez-aulestia, a., gupta, n.k., hernández, m., et al. (2022) gold nanoparticles: current and upcoming biomedical applications in sens-ing, drug, and gene delivery. chemical communications, 58, 10886-10895.
|