[1]
|
lee, k.a., luong, m.k., shaw, h., nathan, p., bataille, v. and spector, t.d. (2021) the gut microbiome: what the oncologist ought to know. british journal of cancer, 125, 1197-1209.
|
[2]
|
matson, v., fessler, j., bao, r., chongsuwat, t., zha, y., alegre, m., et al. (2018) the commensal microbiome is associated with anti-pd-1 efficacy in metastatic melanoma patients. science, 359, 104-108.
|
[3]
|
yarchoan, m., hopkins, a. and jaffee, e.m. (2017) tumor mutational burden and response rate to pd-1 inhibition. new england journal of medicine, 377, 2500-2501.
|
[4]
|
ma, y., li, j., wang, h., chiu, y., kingsley, c.v., fry, d., et al. (2020) combination of pd-1 inhibitor and ox40 agonist induces tumor rejection and immune memory in mouse models of pancreatic cancer. gastroenterology, 159, 306-319.e12.
|
[5]
|
andrews, m.c., duong, c.p.m., gopalakrishnan, v., iebba, v., chen, w., derosa, l., et al. (2021) gut microbiota signatures are associated with toxicity to combined ctla-4 and pd-1 blockade. nature medicine, 27, 1432-1441.
|
[6]
|
santoni, m., piva, f., conti, a., santoni, a., cimadamore, a., scarpelli, m., et al. (2018) re: gut microbiome influences efficacy of pd-1-based immunotherapy against epithelial tumors. european urology, 74, 521-522.
|
[7]
|
routy, b., le chatelier, e., derosa, l., duong, c.p.m., alou, m.t., daillère, r., et al. (2018) gut microbiome influences efficacy of pd-1-based immunotherapy against epithelial tumors. science, 359, 91-97.
|
[8]
|
gopalakrishnan, v., spencer, c.n., nezi, l., reuben, a., andrews, m.c., karpinets, t.v., et al. (2018) gut microbiome modulates response to anti-pd-1 immunotherapy in melanoma patients. science, 359, 97-103.
|
[9]
|
kim, k., kwon, o., ryu, t.y., jung, c.-r.j., min, j.-k., kim, d.-s., son, m.-y. and cho, h.-s. (2019) propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. molecular medicine reports, 20, 1569-1574.
|
[10]
|
tinsley, n., zhou, c., tan, g., rack, s., lorigan, p., blackhall, f., et al. (2019) cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. the oncologist, 25, 55-63.
|
[11]
|
sivan, a., corrales, l., hubert, n., williams, j.b., aquino-michaels, k., earley, z.m., et al. (2015) commensal bifidobacterium promotes antitumor immunity and facilitates anti-pd-l1 efficacy. science, 350, 1084-1089.
|
[12]
|
mycko, m.p., cichalewska, m., cwiklinska, h. and selmaj, k.w. (2015) mir-155-3p drives the development of autoimmune demyelination by regulation of heat shock protein 40. the journal of neuroscience, 35, 16504-16515.
|
[13]
|
davar, d., dzutsev, a.k., mcculloch, j.a., rodrigues, r.r., chauvin, j., morrison, r.m., et al. (2021) fecal microbiota transplant overcomes resistance to anti-pd-1 therapy in melanoma patients. science, 371, 595-602.
|
[14]
|
horn, v. and sonnenberg, g.f. (2024) group 3 innate lymphoid cells in intestinal health and disease. nature reviews gastroenterology & hepatology, 21, 428-443.
|
[15]
|
zheng, y., fang, z., xue, y., zhang, j., zhu, j., gao, r., et al. (2020) specific gut microbiome signature predicts the early-stage lung cancer. gut microbes, 11, 1030-1042.
|
[16]
|
袁文杰, 郭亚琼, 韩毅, 等. 非小细胞肺癌患者肠道微生物特征分析[j]. 微生物学报, 2021, 61(9): 2776-2790.
|
[17]
|
zheng, y., wang, t., tu, x., huang, y., zhang, h., tan, d., et al. (2019) gut microbiome affects the response to anti-pd-1 immunotherapy in patients with hepatocellular carcinoma. journal for immunotherapy of cancer, 7, article no. 193.
|
[18]
|
tomita, y., ikeda, t., sakata, s., saruwatari, k., sato, r., iyama, s., et al. (2020) association of probiotic clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. cancer immunology research, 8, 1236-1242.
|
[19]
|
hanahan, d. (2022) hallmarks of cancer: new dimensions. cancer discovery, 12, 31-46.
|
[20]
|
helmink, b.a., khan, m.a.w., hermann, a., gopalakrishnan, v. and wargo, j.a. (2019) the microbiome, cancer, and cancer therapy. nature medicine, 25, 377-388.
|
[21]
|
takada, k., shimokawa, m., takamori, s., shimamatsu, s., hirai, f., tagawa, t., et al. (2021) clinical impact of probiotics on the efficacy of anti‐pd‐1 monotherapy in patients with nonsmall cell lung cancer: a multicenter retrospective survival analysis study with inverse probability of treatment weighting. international journal of cancer, 149, 473-482.
|
[22]
|
dizman, n., meza, l., bergerot, p., alcantara, m., dorff, t., lyou, y., et al. (2022) nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. nature medicine, 28, 704-712.
|
[23]
|
lythgoe, m.p., mullish, b.h., frampton, a.e. and krell, j. (2022) polymorphic microbes: a new emerging hallmark of cancer. trends in microbiology, 30, 1131-1134.
|
[24]
|
hefazi, m., patnaik, m.m., hogan, w.j., litzow, m.r., pardi, d.s. and khanna, s. (2017) safety and efficacy of fecal microbiota transplant for recurrent clostridium difficile infection in patients with cancer treated with cytotoxic chemotherapy: a single-institution retrospective case series. mayo clinic proceedings, 92, 1617-1624.
|
[25]
|
chen, d., wu, j., jin, d., wang, b. and cao, h. (2018) fecal microbiota transplantation in cancer management: current status and perspectives. international journal of cancer, 145, 2021-2031.
|
[26]
|
maleki, s., lenehan, j., burton, j., silverman, m., parvathy, s.n., el-hajjar, m., et al. (2020) p864 combination of fecal microbiota transplantation from healthy donors with anti-pd1 immunotherapy in treatment-naïve advanced or metastatic melanoma patients. journal for immunotherapy of cancer, 8, a11.
|
[27]
|
zhao, w., lei, j., ke, s., chen, y., xiao, j., tang, z., et al. (2023) fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: an open-label, single-arm, phase ii trial (renmin-215). eclinicalmedicine, 66, article id: 102315.
|
[28]
|
riquelme, e., zhang, y., zhang, l., montiel, m., zoltan, m., dong, w., et al. (2019) tumor microbiome diversity and composition influence pancreatic cancer outcomes. cell, 178, 795-806.e12.
|
[29]
|
tintelnot, j., xu, y., lesker, t.r., schönlein, m., konczalla, l., giannou, a.d., et al. (2023) microbiota-derived 3-iaa influences chemotherapy efficacy in pancreatic cancer. nature, 615, 168-174.
|
[30]
|
machida, k. and tahara, s.m. (2022) immunotherapy and microbiota for targeting of liver tumor-initiating stem-like cells. cancers, 14, article no. 2381.
|