[1]
|
afkarian, m., zelnick, l.r., hall, y.n., heagerty, p.j., tuttle, k., weiss, n.s., et al. (2016) clinical manifestations of kidney disease among us adults with diabetes, 1988-2014. jama, 316, 602-610.
|
[2]
|
de boer, i.h. (2013) kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. diabetes care, 37, 24-30.
|
[3]
|
魏倩, 张锦. 2型糖尿病肾病不同时期的胰岛素抵抗分析[j]. 中国中西医结合肾病杂志, 2010, 11(1): 50-52.
|
[4]
|
韩爽, 徐弘昭, 许钟镐. 胰岛素抵抗在糖尿病及糖尿病肾病进展中的作用[j]. 中国实验诊断学, 2017, 21(2): 368-371.
|
[5]
|
赵鹏鸣, 王俭勤, 梁耀军. 内皮细胞损伤在糖尿病肾病发病机制中的作用[j]. 中国糖尿病杂志, 2016, 24(2): 169-172.
|
[6]
|
turner, n. and heilbronn, l.k. (2008) is mitochondrial dysfunction a cause of insulin resistance? trends in endocrinology & metabolism, 19, 324-330.
|
[7]
|
瞿华, 郑怡, 宫晓莉, 等. 线粒体功能障碍在糖尿病并发症发病机制及治疗中的研究进展[j]. 中华内分泌代谢杂志, 2020, 36(2): 161-164.
|
[8]
|
giacco, f. and brownlee, m. (2010) oxidative stress and diabetic complications. circulation research, 107, 1058-1070.
|
[9]
|
do nascimento, l.r. and domingueti, c.p. (2019) micrornas: new biomarkers and promising therapeutic targets for diabetic kidney disease. brazilian journal of nephrology, 41, 412-422.
|
[10]
|
zhang, j., li, s., li, l., li, m., guo, c., yao, j., et al. (2015) exosome and exosomal microrna: trafficking, sorting, and function. genomics, proteomics & bioinformatics, 13, 17-24.
|
[11]
|
尹频, 贺勇, 查何, 等. mir-451对肾小球系膜细胞增殖的抑制作用及其机制[j]. 中国生物制品学杂志, 2013, 26(12): 1748-1752.
|
[12]
|
hur, w., lee, j.h., kim, s.w., kim, j., bae, s.h., kim, m., et al. (2015) downregulation of microrna-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the ampk/akt pathway. the international journal of biochemistry & cell biology, 64, 265-276.
|
[13]
|
sankrityayan, h., kulkarni, y.a. and gaikwad, a.b. (2019) diabetic nephropathy: the regulatory interplay between epigenetics and micrornas. pharmacological research, 141, 574-585.
|
[14]
|
mohan, a., singh, r.s., kumari, m., garg, d., upadhyay, a., ecelbarger, c.m., et al. (2016) urinary exosomal microrna-451-5p is a potential early biomarker of diabetic nephropathy in rats. plos one, 11, e0154055.
|
[15]
|
张晶露, 邱琳, 雒晓春. 糖尿病肾病发病机制研究进展[j]. 医学综述, 2017, 23(8): 1623⁃1627.
|
[16]
|
xiao, l., zhu, x., yang, s., liu, f., zhou, z., zhan, m., et al. (2014) rap1 ameliorates renal tubular injury in diabetic nephropathy. diabetes, 63, 1366-1380.
|
[17]
|
冯俊, 马屹茕, 陈朝威, 丁国华. 线粒体复合体在肾脏疾病中的研究进展[j]. 中华肾脏病杂志, 2020(3): 247-252.
|
[18]
|
ayanga, b.a., badal, s.s., wang, y., galvan, d.l., chang, b.h., schumacker, p.t., et al. (2016) dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy. journal of the american society of nephrology, 27, 2733-2747.
|
[19]
|
czajka, a. and malik, a.n. (2016) hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: implications for diabetic nephropathy. redox biology, 10, 100-107.
|
[20]
|
ma, t., zhu, j., chen, x., zha, d., singhal, p.c. and ding, g. (2013) high glucose induces autophagy in podocytes. experimental cell research, 319, 779-789.
|
[21]
|
bitarte, n., bandres, e., boni, v., zarate, r., rodriguez, j., gonzalez-huarriz, m., et al. (2011) microrna-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. stem cells, 29, 1661-1671.
|
[22]
|
pan, x., wang, r. and wang, z. (2013) the potential role of mir-451 in cancer diagnosis, prognosis, and therapy. molecular cancer therapeutics, 12, 1153-1162.
|
[23]
|
cao, j., da, y., li, h., peng, y. and hu, x. (2020) upregulation of microrna-451 attenuates myocardial i/r injury by suppressing hmgb1. plos one, 15, e0235614.
|
[24]
|
bai, x., geng, j., zhou, z., tian, j. and li, x. (2016) microrna-130b improves renal tubulointerstitial fibrosis via repression of snail-induced epithelial-mesenchymal transition in diabetic nephropathy. scientific reports, 6, article no. 20475.
|
[25]
|
zhuo, s., yang, m., zhao, y., chen, x., zhang, f., li, n., et al. (2016) microrna-451 negatively regulates hepatic glucose production and glucose homeostasis by targeting glycerol kinase-mediated gluconeogenesis. diabetes, 65, 3276-3288.
|
[26]
|
wang, w., zhang, l., wang, y., ding, y., chen, t., wang, y., et al. (2017) involvement of mir-451 in resistance to paclitaxel by regulating ywhaz in breast cancer. cell death & disease, 8, e3071-e3071.
|
[27]
|
karolina, d.s., armugam, a., tavintharan, s., wong, m.t.k., lim, s.c., sum, c.f., et al. (2011) microrna 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. plos one, 6, e22839.
|
[28]
|
trajkovski, m., hausser, j., soutschek, j., bhat, b., akin, a., zavolan, m., et al. (2011) micrornas 103 and 107 regulate insulin sensitivity. nature, 474, 649-653.
|
[29]
|
liang, c., gao, l., liu, y., liu, y., yao, r., li, y., et al. (2019) mir-451 antagonist protects against cardiac fibrosis in streptozotocin-induced diabetic mouse heart. life sciences, 224, 12-22.
|
[30]
|
sun, y., peng, r., peng, h., liu, h., wen, l., wu, t., et al. (2016) mir-451 suppresses the nf-kappab-mediated proinflammatory molecules expression through inhibiting lmp7 in diabetic nephropathy. molecular and cellular endocrinology, 433, 75-86.
|
[31]
|
孙艳. mir-451通过lmp7/nf-kappb信号通路调控小鼠糖尿病肾病的机制研究[d]: [博士学位论文]. 重庆: 重庆医科大学, 2016.
|
[32]
|
mootha, v.k., lindgren, c.m., eriksson, k., subramanian, a., sihag, s., lehar, j., et al. (2003) pgc-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. nature genetics, 34, 267-273.
|
[33]
|
patti, m.e., butte, a.j., crunkhorn, s., cusi, k., berria, r., kashyap, s., et al. (2003) coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of pgc1 and nrf1. proceedings of the national academy of sciences, 100, 8466-8471.
|
[34]
|
张克交, 杨艳敏, 张彦栋, 等. 线粒体与胰岛素抵抗的关系研究进展[j]. 中国当代医药, 2019, 26(32): 16-19.
|
[35]
|
quinlan, c.l., perevoshchikova, i.v., hey-mogensen, m., orr, a.l. and brand, m.d. (2013) sites of reactive oxygen species generation by mitochondria oxidizing different substrates. redox biology, 1, 304-312.
|
[36]
|
su, y., chiou, w., chao, s., lee, m., chen, c. and tsai, y. (2011) ligustilide prevents lps-induced inos expression in raw 264.7 macrophages by preventing ros production and down-regulating the mapk, nf-κb and ap-1 signaling pathways. international immunopharmacology, 11, 1166-1172.
|
[37]
|
phosat, c., panprathip, p., chumpathat, n., prangthip, p., chantratita, n., soonthornworasiri, n., et al. (2017) elevated c-reactive protein, interleukin 6, tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural thais: a cross-sectional study. bmc endocrine disorders, 17, article no. 44.
|
[38]
|
徐海波, 闫晓光, 钟威. 新诊断2型糖尿病患者血清nesfatin-1α肿瘤坏死因子-α水平与胰岛素抵抗的相关性研究[j]. 中国糖尿病杂志, 2017, 25(1): 45-48.
|
[39]
|
zhang, y. and ye, j. (2012) mitochondrial inhibitor as a new class of insulin sensitizer. acta pharmaceutica sinica b, 2, 341-349.
|
[40]
|
t. barry levine arlene bradley levine. 代谢综合征与心血管疾病[m]. 张华, 张代富, 译. 北京: 人民出版社, 2010: 28-29.
|
[41]
|
黄宇理, 包宗明. 冠心病患者血浆8-表氧-前列腺素f2α和胰岛素抵抗的变化及临床意义[j]. 中国循证心血管医学杂志, 2011, 3(2): 121-123.
|
[42]
|
steinberg, h.o., paradisi, g., hook, g., crowder, k., cronin, j. and baron, a.d. (2000) free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. diabetes, 49, 1231-1238.
|