[1]
|
刘浩洋, 户将, 李勇锋, 文再文. 最优化: 建模, 算法与理论[m]. 北京: 高等教育出版社, 2020.
|
[2]
|
li, w., bian, w. and toh, k.-c. (2022) difference-of-convex algorithms for a class of sparse group l0 regularized optimization problems. siam journal on optimization, 32, 1614-1641.
|
[3]
|
jain, p., rao, n. and dhillon, i.s. (2016) structured sparse regression via greedy hard thresholding. advances in neural information processing systems, 29, 1516-1524.
|
[4]
|
chen, x., pan, l. and xiu, n. (2023) solution sets of three sparse optimization problems for multivariate regression. journal of global optimization, 87, 347-371.
|
[5]
|
pan, l. and chen, x. (2021) group sparse optimization for image recovery using capped folded concave functions. siam journal on imaging sciences, 14, 1-25.
|
[6]
|
zhang, y., zhang, n., sun, d. and toh, k.c. (2020) an efficient hessian-based algorithm for solving large-scale sparse group lasso problems. mathematical programming, 179, 223-263.
|
[7]
|
zhang, y., zhang, n., sun, d. and toh, k.c. (2020) a proximal point dual newton algorithm for solving group graphical lasso problems. siam journal on optimization, 30, 2197-2220.
|
[8]
|
peng, d. and chen, x. (2020) computation of second-order directional stationary points for group sparse optimization. optimization methods and software, 35, 348-376.
|
[9]
|
luo, z., sun, d., toh, k.c. and xiu, n. (2019) solving the oscar and slope models using a semismooth newton-based augmented lagrangian method. journal of machine learning research, 20, 1-25.
|
[10]
|
chen, x. and toint, p.l. (2021) high-order evaluation complexity for convexly-constrained optimization with non-lipschitzian group sparsity terms. mathematical programming, 187, 47-78.
|
[11]
|
beck, a. and hallak, n. (2019) optimization problems involving group sparsity terms. math- ematical programming, 178, 39-67.
|
[12]
|
zhang, y., wei, c. and liu, x. (2022) group logistic regression models with lp,q regulariza- tion. mathematics, 10, article 2227.
|
[13]
|
cai, t.t., zhang, a.r. and zhou, y.c. (2022) sparse group lasso: optimal sample complex- ity, convergence rate, and statistical inference. ieee transactions on information theory, 68, 5975-6002.
|
[14]
|
beck, a. and teboulle, m. (2009) a fast iterative shrinkage-thresholding algorithm for linear inverse problems. siam journal on imaging sciences, 2, 183-202.
|
[15]
|
bolte, j., sabach, s. and teboulle, m. (2014) proximal alternating linearized minimization for nonconvex and nonsmooth problems. mathematical programming, 146, 459-494.
|
[16]
|
hu, y., li, c., meng, k., qin, j. and yang, x. (2017) group sparse optimization via lp, q regularization. the journal of machine learning research, 70, 960-1011.
|