[1]
|
guo, x., zhang, j., shang, j., cheng, y., tian, s. and yao, y. (2023) human leukocyte antigen-g in gynaecological tumours. international journal of immunogenetics, 50, 163-176.
|
[2]
|
shi, x., wang, j., lei, y., cong, c., tan, d. and zhou, x. (2019) research progress on the pi3k/akt signaling pathway in gynecological cancer (review). molecular medicine reports, 19, 4529-4535.
|
[3]
|
dibble, c.c. and cantley, l.c. (2015) regulation of mtorc1 by pi3k signaling. trends in cell biology, 25, 545-555.
|
[4]
|
diaz-padilla, i., et al. (2012) biologic rationale and clinical activity of mtor inhibitors in gynecological cancer. cancer treatment reviews, 38, 767-775.
|
[5]
|
osaki, m., oshimura, m. and ito, h. (2004) pi3k-akt pathway: its functions and alterations in human cancer. apoptosis, 9, 667-676.
|
[6]
|
passirani, c., vessières, a., la regina, g., link, w. and silvestri, r. (2022) modulating undruggable targets to overcome cancer therapy resistance. drug resistance updates, 60, article id: 100788.
|
[7]
|
mayer, i.a. and arteaga, c.l. (2016) the pi3k/akt pathway as a target for cancer treatment. annual review of medicine, 67, 11-28.
|
[8]
|
margaria, j.p., ratto, e., gozzelino, l., li, h. and hirsch, e. (2019) class ii pi3ks at the intersection between signal transduction and membrane trafficking. biomole-cules, 9, article no. 104.
|
[9]
|
li, q., li, z., luo, t. and shi, h. (2022) tar-geting the pi3k/akt/mtor and raf/mek/erk pathways for cancer therapy. molecular biomedicine, 3, article no. 47.
|
[10]
|
fergusson, a.d., zhang, r., riffle, j.s. and davis, r.m. (2023) encapsulation of pi3k inhibitor ly294002 within polymer nanoparticles using ion pairing flash nanoprecipi-tation. pharmaceutics, 15, article no. 1157.
|
[11]
|
lenz, g., hawkes, e., verhoef, g., haioun, c., thye lim, s., seog heo, d., et al. (2020) single-agent activity of phosphatidylinositol 3-kinase inhibition with copanlisib in patients with molecularly defined relapsed or refractory diffuse large b-cell lymphoma. leukemia, 34, 2184-2197.
|
[12]
|
savas, p., lo, l.l., luen, s.j., blackley, e.f., callahan, j., moodie, k., et al. (2022) alpelisib monotherapy for pi3k-altered, pretreated advanced breast cancer: a phase ii study. cancer discovery, 12, 2058-2073.
|
[13]
|
jones, r.h., casbard, a., carucci, m., cox, c., butler, r., alchami, f., et al. (2020) fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (faktion): a multicentre, randomised, controlled, phase 2 trial. the lancet oncology, 21, 345-357.
|
[14]
|
sidaway, p. (2023) capivasertib delays disease progression. nature reviews clinical oncology, 20, 579.
|
[15]
|
sorolla, m.a., parisi, e. and sorolla, a. (2020) determinants of sensitivity to radiotherapy in endometrial cancer. cancers (basel), 12, article no. 1906.
|
[16]
|
xie, p., et al. (2019) traf4 promotes endometrial cancer cell growth and migration by activation of pi3k/akt/ oct4 signaling. experimental and molecular pathology, 108, 9-16.
|
[17]
|
liao, j., chen, h., qi, m., wang, j. and wang, m. (2022) mllt11-tril complex promotes the progression of endometrial cancer through pi3k/akt/mtor signaling path-way. cancer biology & therapy, 23, 211-224.
|
[18]
|
hirai, h., sootome, h., nakatsuru, y., miyama, k., taguchi, s., tsujioka, k., et al. (2010) mk-2206, an allosteric akt inhibitor, enhances antitumor efficacy by standard chemo-therapeutic agents or molecular targeted drugs in vitro and in vivo. molecular cancer therapeutics, 9, 1956-1967.
|
[19]
|
che, y., li, y., zheng, f., et al. (2019) trip4 promotes tumor growth and metastasis and regulates radiosensitivity of cervical cancer by activating mapk, pi3k/akt, and htert signaling. cancer letters, 28, 1-13.
|
[20]
|
yap, t.a., garrett, m.d., walton, m.i., raynaud, f., de bono, j.s. and workman, p. (2008) targeting the pi3k-akt- mtor pathway: progress, pitfalls, and promises. current opinion in pharmacology, 8, 393-412.
|
[21]
|
aoki, m. and fujishita, t. (2017) oncogenic roles of the pi3k/akt/mtor axis. current topics in microbiology and immunology, 407, 153-189.
|
[22]
|
cheaib, b., auguste, a. and leary, a. (2015) the pi3k/akt/mtor pathway in ovarian cancer: therapeutic opportunities and challenges. chinese journal of cancer, 34, 4-16.
|
[23]
|
ediriweera, m.k., tennekoon, k.h. and samarakoon, s.r. (2019) role of the pi3k/akt/mtor signaling pathway in ovarian cancer: biological and therapeutic significance. seminars in cancer biology, 59, 147-160.
|
[24]
|
van der ploeg, p., uittenboogaard, a., thijs, a.m.j., west-geest, h.m., boere, i.a., lambrechts, s., van de stolpe, a., bekkers, r.l.m. and piek, j.m.j. (2021) the effectiveness of monotherapy with pi3k/akt/mtor pathway inhibitors in ovarian cancer: a meta-analysis. gynecologic oncolo-gy, 163, 433-444.
|
[25]
|
chu, x., lou, j., yi, y., zhong, l. and huang, o. (2023) knockdown of arhgap30 inhibits ovarian cancer cell proliferation, migration, and invasiveness by suppressing the pi3k/akt/mtor signaling pathway. european journal of histochemistry, 67, 3653.
|
[26]
|
mak, v.c., wong, o.g., siu, m.k., wong, e.s., ng, w.y., wong, r.w., chan, k.k., ngan, h.y. and cheung, a.n. (2015) fbi-1 is overexpressed in gestational trophoblastic disease and promotes tumor growth and cell aggressiveness of choriocarcinoma via pi3k/akt signaling. the american journal of pathology, 185, 2038-2048.
|
[27]
|
shih, i.m. (2007) gestational trophoblastic neo-plasia—pathogenesis and potential therapeutic targets. the lancet oncology, 8, 642-650.
|