[1]
|
brjuno, a.d. (1965) on convergence of transforms of differential equations to the normal
form. doklady akademii nauk sssr, 165, 987-989.
|
[2]
|
brjuno, a.d., eskin, g.i., genov, g.k., et al. (1971) transactions of the moscow mathematical
society. vol. 25, american mathematical society, providence, 131-288.
|
[3]
|
cheraghi, d. (2019) typical orbits of quadratic polynomials with a neutral fixed point:
non-brjuno type. annales scientifiques de l'ens, 52, 59-138.
|
[4]
|
siegel, c.l. (1942) iteration of analytic functions. annals of mathematics, 43, 607-612.
|
[5]
|
yang, f. (2023) siegel disks and related topics.
|
[6]
|
cremer, h. (1928) zum zentrumproblem. mathematische annalen, 98, 151-163.
|
[7]
|
geyer, l. (2019) linearizability of saturated polynomials. indiana university mathematics
journal, 68, 1551-1578.
|
[8]
|
yoccoz, j.-c. (1988) linearisation des germes de diffeomorphismes holomorphes de (c, 0).
comptes rendus de l'academie des sciences, 306, 55-58.
|
[9]
|
perez-marco, r. (1997) siegel disks with smooth boundaries. preprint.
|
[10]
|
avila, a., buff, x. and cheritat, a. (2004) siegel disks with smooth boundaries. acta math-
ematica, 193, 1-30.
|
[11]
|
buff, x. and cheritat, a. (2007) how regular can the boundary of a quadratic siegel disk
be? proceedings of the american mathematical society, 135, 1073-1080.
|
[12]
|
cheritat, a. (2011) relatively compact siegel disks with non-locally connected boundaries.
mathematische annalen, 349, 529-542.
|
[13]
|
biswas, k. (2016) positive area and inaccessible fixed points for hedgehogs. ergodic theory
and dynamical systems, 36, 1839-1850.
|
[14]
|
fu, y. and yang, f. (2020) area and hausdorff dimension of sierpinski carpet julia sets.
mathematische zeitschrift, 294, 1441-1456.
|
[15]
|
cheraghi, d., dezotti, a. and yang, f. (2020) dimension paradox of irrationally indifferent
attractors. submitted.
|