[1]
|
中华医学会肿瘤学分会早诊早治学组. 中国食管癌早诊早治专家共识[j]. 中华肿瘤杂志, 2022, 44(10): 1066-1075.
|
[2]
|
lagergren, j. and lagergren, p. (2010) oesophageal cancer. british medical journal, 341, c6280.
|
[3]
|
chen, w., zheng, r., zhang, s., zeng, h., xia, c., zuo, t., et al. (2017) cancer incidence and mortality in china, 2013. cancer letters, 401, 63-71.
|
[4]
|
yoshii, s., mabe, k., watano, k., ohno, m., matsumoto, m., ono, s., et al. (2019) validity of endoscopic features for the diagnosis of helicobacter pylori infection status based on the kyoto classification of gastritis. digestive endoscopy, 32, 74-83.
|
[5]
|
jayatilake, s.m.d.a.c. and ganegoda, g.u. (2021) involvement of machine learning tools in healthcare decision making. journal of healthcare engineering, 2021, 1-20.
|
[6]
|
张佳, 孙凯. 人工智能深度学习在心血管影像诊断中的研究进展[j]. 中国医学装备, 2020, 17(4): 183-186.
|
[7]
|
de souza, l.a., palm, c., mendel, r., hook, c., ebigbo, a., probst, a., et al. (2018) a survey on barrett’s esophagus analysis using machine learning. computers in biology and medicine, 96, 203-213.
|
[8]
|
horie, y., yoshio, t., aoyama, k., yoshimizu, s., horiuchi, y., ishiyama, a., et al. (2019) diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. gastrointestinal endoscopy, 89, 25-32.
|
[9]
|
鲍瀛, 李瑞瑶, 何明远, 等. 基于深度学习的图像识别技术在食管癌早期筛查中的应用研究[j]. 中国数字医学, 2021, 16(9): 90-93.
|
[10]
|
li, b., cai, s., tan, w., li, j., yalikong, a., feng, x., et al. (2021) comparative study on artificial intelligence systems for detecting early esophageal squamous cell carcinoma between narrow-band and white-light imaging. world journal of gastroenterology, 27, 281-293.
|
[11]
|
yang, x., li, z., shao, x., ji, r., qu, j., zheng, m., et al. (2021) real-time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video). digestive endoscopy, 33, 1075-1084.
|
[12]
|
iwagami, h., ishihara, r., aoyama, k., fukuda, h., shimamoto, y., kono, m., et al. (2020) artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. journal of gastroenterology and hepatology, 36, 131-136.
|
[13]
|
hashimoto, r., requa, j., dao, t., ninh, a., tran, e., mai, d., et al. (2020) artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in barrett’s esophagus (with video). gastrointestinal endoscopy, 91, 1264-1271.e1.
|
[14]
|
yuan, x., guo, l., liu, w., zeng, x., mou, y., bai, s., et al. (2021) artificial intelligence for detecting superficial esophageal squamous cell carcinoma under multiple endoscopic imaging modalities: a multicenter study. journal of gastroenterology and hepatology, 37, 169-178.
|
[15]
|
waki, k., ishihara, r., kato, y., shoji, a., inoue, t., matsueda, k., et al. (2021) usefulness of an artificial intelligence system for the detection of esophageal squamous cell carcinoma evaluated with videos simulating overlooking situation. digestive endoscopy, 33, 1101-1109.
|
[16]
|
中华人民共和国国家卫生健康委员会医政医管局. 食管癌诊疗指南(2022年版) [j]. 中华消化外科杂志, 2022, 21(10): 1247-1268.
|
[17]
|
tokai, y., yoshio, t., aoyama, k., horie, y., yoshimizu, s., horiuchi, y., et al. (2020) application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. esophagus, 17, 250-256.
|
[18]
|
nakagawa, k., ishihara, r., aoyama, k., ohmori, m., nakahira, h., matsuura, n., et al. (2019) classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. gastrointestinal endoscopy, 90, 407-414.
|
[19]
|
shimamoto, y., ishihara, r., kato, y., shoji, a., inoue, t., matsueda, k., et al. (2020) real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence. journal of gastroenterology, 55, 1037-1045.
|
[20]
|
liu, w., yuan, x., guo, l., pan, f., wu, c., sun, z., et al. (2022) artificial intelligence for detecting and delineating margins of early escc under wli endoscopy. clinical and translational gastroenterology, 13, e00433.
|
[21]
|
yuan, x., zeng, x., he, l., ye, l., liu, w., hu, y., et al. (2022) artificial intelligence for detecting and delineating a small flat-type early esophageal squamous cell carcinoma under multimodal imaging. endoscopy, 55, e141-e142.
|
[22]
|
oyama, t., inoue, h., arima, m., momma, k., omori, t., ishihara, r., et al. (2016) prediction of the invasion depth of superficial squamous cell carcinoma based on microvessel morphology: magnifying endoscopic classification of the japan esophageal society. esophagus, 14, 105-112.
|
[23]
|
zhao, y., xue, d., wang, y., zhang, r., sun, b., cai, y., et al. (2018) computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy. endoscopy, 51, 333-341.
|
[24]
|
everson, m., herrera, l., li, w., luengo, i.m., ahmad, o., banks, m., et al. (2019) artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: a proof-of-concept study. united european gastroenterology journal, 7, 297-306.
|
[25]
|
yuan, x., liu, w., liu, y., zeng, x., mou, y., wu, c., et al. (2022) artificial intelligence for diagnosing microvessels of precancerous lesions and superficial esophageal squamous cell carcinomas: a multicenter study. surgical endoscopy, 36, 8651-8662.
|
[26]
|
中国医院协会介入医学中心分会. 人工智能应用于食管癌临床诊疗的专家共识[j]. 中华介入放射学电子杂志, 2021, 9(3): 235-246.
|
[27]
|
gao, y., xin, l., feng, y., yao, b., lin, h., sun, c., et al. (2021) feasibility and accuracy of artificial intelligence-assisted sponge cytology for community-based esophageal squamous cell carcinoma screening in china. american journal of gastroenterology, 116, 2207-2215.
|
[28]
|
gao, y., xin, l., lin, h., yao, b., zhang, t., zhou, a., et al. (2023) machine learning-based automated sponge cytology for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction: a nationwide, multicohort, prospective study. the lancet gastroenterology & hepatology, 8, 432-445.
|
[29]
|
沈雨雯, 石逸秋, 解添淞, 等. 人工智能在胰腺癌影像诊断和评价中的研究进展[j]. 临床放射学杂志, 2023, 42(9): 1527-1530.
|
[30]
|
chen, h., zhou, x., tang, x., li, s. and zhang, g. (2020) prediction of lymph node metastasis in superficial esophageal cancer using a pattern recognition neural network. cancer management and research, 12, 12249-12258.
|