[1]
|
brook, c. and michael, l. (2013) endogenous voltage potentials and the microenvironment: bioelectric signals that reveal, induce and normalize cancer. journal of clinical & experimental oncology, 1, s1-002.
|
[2]
|
moreddu, r. (2023) nanotechnology and cancer bioelectricity: bridging the gap between biology and translational medicine. advanced science, 11, article 2304110.
|
[3]
|
黄芳, 颜美, 王莉, 等. 浅析纳米材料在医疗领域的应用[j]. 广州化工, 2020, 48(15): 18-20 24.
|
[4]
|
ni, l., shaik, r., xu, r., zhang, g. and zhe, j. (2020) a microfluidic sensor for continuous, in situ surface charge measurement of single cells. acs sensors, 5, 527-534.
|
[5]
|
lu, j., tan, m. and cai, q. (2015) the warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. cancer letters, 356, 156-164.
|
[6]
|
kaufmann, j.k. and chiocca, e.a. (2014) glioma virus therapies between bench and bedside. neuro-oncology, 16, 334-351.
|
[7]
|
rizwan, m., shoukat, a., ayub, a., razzaq, b. and tahir, m.b. (2021) types and classification of nanomaterials. in: tahir, m.b., sagir, m. asiri, a.m., eds., nanomaterials: synthesis, characterization, hazards and safety, elsevier, 31-54.
|
[8]
|
what is a nanomaterial—definition, examples and uses.
|
[9]
|
buzea, c. and pacheco, i. (2016) nanomaterials and their classification. in: shukla, a.k., ed., emr/esr/epr spectroscopy for characterization of nanomaterials, springer, 3-45.
|
[10]
|
(2019) nanomaterials definition matters.
|
[11]
|
mitragotri, s., anderson, d.g., chen, x., chow, e.k., ho, d., kabanov, a.v., et al. (2015) accelerating the translation of nanomaterials in biomedicine. acs nano, 9, 6644-6654.
|
[12]
|
diez-pascual, a.m. and rahdar, a. (2022) functional nanomaterials in biomedicine: current uses and potential applications. chemmedchem, 17, e202200142.
|
[13]
|
khursheed, r., dua, k., vishwas, s., gulati, m., jha, n.k., aldhafeeri, g.m., et al. (2022) biomedical applications of metallic nanoparticles in cancer: current status and future perspectives. biomedicine & pharmacotherapy, 150, article 112951.
|
[14]
|
niedermeyer, e. and da silva, f.l. (2005) electroencephalography: basic principles, clinical applications, and related fields. 5th edition, lippincott williams & wilkins.
|
[15]
|
klem, g.h., lüders, h.o., jasper, h.h., et al. (1999) the ten-twenty electrode system of the international federation. the international federation of clinical neurophysiology. electroencephalography and clinical neurophysiology supplement, 52, 3-6.
|
[16]
|
wesseling, p. and capper, d. (2018) who 2016 classification of gliomas. neuropathology and applied neurobiology, 44, 139-150.
|
[17]
|
hanif, f., et al. (2017) glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. asian pacific journal of cancer prevention, 18, 3-9.
|
[18]
|
gill, b.j., pisapia, d.j., malone, h.r., goldstein, h., lei, l., sonabend, a., et al. (2014) mri-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. proceedings of the national academy of sciences, 111, 12550-12555.
|
[19]
|
halpern, c.h., samadani, u., litt, b., jaggi, j.l. and baltuch, g.h. (2008) deep brain stimulation for epilepsy. neurotherapeutics, 5, 59-67.
|
[20]
|
holder, d.s. (2005) electrical impedance tomography: methods, history and applications. institute of physics publish-ing.
|
[21]
|
刘杨, 段小洁. 基于碳纳米材料的神经电极技术[j]. 物理化学学报, 2020, 36(12): 95-107.
|
[22]
|
kostarelos, k. and novoselov, k.s. (2014) exploring the interface of graphene and biology. science, 344, 261-263.
|
[23]
|
李晶, 杨晓英. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[j]. 化学进展, 2013, 25(z1): 380-396.
|
[24]
|
高越. 美国脑机接口技术研究及应用进展[j]. 信息通信技术与政策, 2020(12): 75-80.
|
[25]
|
“新曼哈顿工程”: 下一代仿生臂[eb/ol]. , 2024-10-08.
|
[26]
|
li, n., zhang, q., gao, s., song, q., huang, r., wang, l., et al. (2013) three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. scientific reports, 3, article no. 1604.
|
[27]
|
haleem, a., javaid, m., singh, r.p., rab, s. and suman, r. (2023) applications of nanotechnology in medical field: a brief review. global health journal, 7, 70-77.
|
[28]
|
xia, c., jin, x., garalleh, h.a., garaleh, m., wu, y., hill, j.m., et al. (2023) optimistic and possible contribution of nanomaterial on biomedical applications: a review. environmental research, 218, article 114921.
|
[29]
|
logothetis, n.k. (2008) what we can do and what we cannot do with fmri. nature, 453, 869-878.
|
[30]
|
mégevand, p., groppe, d.m., goldfinger, m.s., hwang, s.t., kingsley, p.b., davidesco, i., et al. (2014) seeing scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. the journal of neuroscience, 34, 5399-5405.
|
[31]
|
chang, c., leopold, d.a., schölvinck, m.l., mandelkow, h., picchioni, d., liu, x., et al. (2016) tracking brain arousal fluctuations with fmri. proceedings of the national academy of sciences, 113, 4518-4523.
|
[32]
|
park, d., cho, y., goh, s. and choi, y. (2014) hyaluronic acid-polypyrrole nanoparticles as ph-responsive theranostics. chemical communications, 50, 15014-15017.
|
[33]
|
ahadian, s., et al. (2016) hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies-web of science core collection.
|
[34]
|
du, x., xiao, r., fu, h., yuan, z., zhang, w., yin, l., et al. (2019) hypericin-loaded graphene oxide protects ducks against a novel duck reovirus. materials science and engineering: c, 105, article 110052.
|
[35]
|
varghese, m. and balachandran, m. (2021) antibacterial efficiency of carbon dots against gram-positive and gram-negative bacteria: a review. journal of environmental chemical engineering, 9, article 106821.
|
[36]
|
lira-díaz, e., cruz-márquez, r., gonzález-pedroza, m.g., gonzalez-perez, o., morales-luckie, r.a. and acevedo-fernández, j.j. (2024) silver nanoparticles based on annona muricata peel reduce cell viability in medulloblastoma and neuroblastoma cell lines. journal of nanotechnology.
|
[37]
|
xie, l., wang, g., zhou, h., zhang, f., guo, z., liu, c., et al. (2016) functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. biomaterials, 103, 219-228.
|
[38]
|
zhang, l., xia, j., zhao, q., liu, l. and zhang, z. (2010) functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. small, 6, 537-544.
|
[39]
|
mieszawska, a.j., kim, y., gianella, a., van rooy, i., priem, b., labarre, m.p., et al. (2013) synthesis of polymer–lipid nanoparticles for image-guided delivery of dual modality therapy. bioconjugate chemistry, 24, 1429-1434.
|
[40]
|
weaver, c.l., larosa, j.m., luo, x. and cui, x.t. (2014) electrically controlled drug delivery from graphene oxide nanocomposite films. acs nano, 8, 1834-1843.
|
[41]
|
lukianova-hleb, e.y., ren, x., sawant, r.r., wu, x., torchilin, v.p. and lapotko, d.o. (2014) on-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. nature medicine, 20, 778-784.
|
[42]
|
okun, m.s. and tagliati, m. (2006) deep brain stimulation therapy in the management of parkinson’s disease. expert review of neurotherapeutics, 6, 169-180.
|
[43]
|
liu, t., zhou, y., zhang, r., chen, z., xiao, z., gong, y., zhang, x. and li, j. (2021) ultrasmall gold nanoclusters for precise drug delivery and synergistic therapy of brain tumors. advanced functional materials, 31, article 2100074.
|
[44]
|
dhawan, s. and patel, r.r. (2021) radiotherapy for glioblastoma: current concepts and future directions. journal of neuro-oncology, 151, 171-185.
|
[45]
|
ciria, h.m.c., et al. (2013) antitumor effects of electrochemical treatment. chinese journal of cancer research, 25, 223-234.
|
[46]
|
jenkins, e.p.w., finch, a., gerigk, m., triantis, i.f., watts, c. and malliaras, g.g. (2021) electrotherapies for glioblastoma. advanced science, 8, e2100978.
|
[47]
|
gong, x., chen, z., hu, j.j. and liu, c. (2022) advances of electroporation-related therapies and the synergy with immunotherapy in cancer treatment. vaccines, 10, article 1942.
|
[48]
|
sprugnoli, g., monti, l., lippa, l., neri, f., mencarelli, l., ruffini, g., et al. (2019) reduction of intratumoral brain perfusion by noninvasive transcranial electrical stimulation. science advances, 5, eaau9309.
|
[49]
|
transcranial electrical stimulation potential treatment for brain tumours.
|
[50]
|
singh, r., sharma, a., saji, j., umapathi, a., kumar, s. and daima, h.k. (2022) smart nanomaterials for cancer diagnosis and treatment. nano convergence, 9, article no. 21.
|
[51]
|
cheng, z., li, m., dey, r. and chen, y. (2021) nanomaterials for cancer therapy: current progress and perspectives. journal of hematology & oncology, 14, article no. 85.
|
[52]
|
yu, z., gao, l., chen, k., zhang, w., zhang, q., li, q., et al. (2021) nanoparticles: a new approach to upgrade cancer diagnosis and treatment. nanoscale research letters, 16, article no. 88.
|
[53]
|
kashyap, b.k., singh, v.v., solanki, m.k., kumar, a., ruokolainen, j. and kesari, k.k. (2023) smart nanomaterials in cancer theranostics: challenges and opportunities. acs omega, 8, 14290-14320.
|
[54]
|
caffo, m., curcio, a., rajiv, k., caruso, g., venza, m. and germanò, a. (2023) potential role of carbon nanomaterials in the treatment of malignant brain gliomas. cancers, 15, article 2575.
|
[55]
|
ale, y. and nainwal, n. (2023) progress and challenges in the diagnosis and treatment of brain cancer using nanotechnology. molecular pharmaceutics, 20, 4893-4921.
|
[56]
|
zottel, a., videtič paska, a. and jovčevska, i. (2019) nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. materials, 12, article 1588.
|
[57]
|
gusmão, l.a., matsuo, f.s., barbosa, h.f.g. and tedesco, a.c. (2022) advances in nano-based materials for glioblastoma multiforme diagnosis: a mini-review. frontiers in nanotechnology, 4, article 836802.
|
[58]
|
yu, s., chen, l., xu, h., long, s., jiang, j., wei, w., et al. (2022) application of nanomaterials in diagnosis and treatment of glioblastoma. frontiers in chemistry, 10, article 1063152.
|
[59]
|
waris, a., ali, a., khan, a.u., asim, m., zamel, d., fatima, k., et al. (2022) applications of various types of nanomaterials for the treatment of neurological disorders. nanomaterials, 12, article 2140.
|
[60]
|
neganova, m.e., aleksandrova, y.r., sukocheva, o.a. and klochkov, s.g. (2022) benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. seminars in cancer biology, 86, 805-833.
|