(2 1)维空时分数阶ablowitz-凯发娱乐官网

(2 1)维空时分数阶ablowitz-kaup-newell-segur方程的新精确解的构建
construction of the new exact solutions for the space-time fractional (2 1)-dimensional ablowitz-kaup-newell-segur equation
doi: , , html, ,   
作者: 黄 春:四川职业技术学院教师教育学院,四川 遂宁
关键词: ;;;;;;;
摘要: 非线性ablowitz-kaup-newell-segur方程是一类应用广泛的非线性偏微分方程。(2 1)维空时分数阶ablowitz-kaup-newell-segur方程常用于描述孤立波在光纤中传播的物理过程,本文利用复行波变换和扩展的tanh-函数展开法,获得了(2 1)维空时分数阶ablowitz-kaup-newell-segur方程的系列新的精确行波解。
abstract: the ablowitz-kaup-newell-segur (akns) equations, a class of nonlinear partial differential equations, find their utility in a wide array of applications. the space-time fractional (2 1)-dimensional akns equation, in particular, is capable of describing the physical process of solitary wave propagation in optical fibers. a new class of exact traveling wave solutions of (2 1)-dimensional generalized fractional akns equation are obtained by employing complex traveling wave transformation and extended tanh expansion method.
文章引用:黄春. (2 1)维空时分数阶ablowitz-kaup-newell-segur方程的新精确解的构建[j]. 理论数学, 2024, 14(10): 74-80.

1. 引言

近年来,分数阶微积分在多个学科领域的应用和研究呈现出蓬勃之势,如,光纤光学、流体力学、通信工程、核物理等。因此对分数阶偏微分方程的性质及其解的探讨是有重要现实意义的。目前构造分数阶偏微分方程精确行波解的方法主要有:动力系统分岔法[1] [2],painlevé分析法[3] [4],kudryashv方法[5]-[7],hirota双线性法[8],jacobi 椭圆函数展开法[9] [10],多项式判别系统法[11] [12]。tanh-函数展开法最早是由malfiet在构建非线性发展方程孤立波解系统提出的,范恩贵将其扩展,得到了tanh-函数展开法[13]-[17]

考虑如下的(2 1)维空时分数阶ablowitz-kaup-newell-segur (akns)方程[18] [19]

4 d x β d t α u d x β d x β d x β d y γ u 8 d x β d y γ u d x β u 4 d y γ u d x β d x β ua d x β d x β u=0 (1)

其中 0<α,β,γ1 。akns方程能是一类非常重要的数学模型,可以简化为kdv、mkdv、sine-gordon和非线性schrödinger方程,因此受到广泛关注。文献[18]用(g'/g)-展开法获得到(2 1)维空时分数阶akns方程的部分精确解。本文将引入复行波变换和借助扩展的tanh-函数展开法构造(2 1)维空时分数阶akns方程一类新的精确行波解。

2. 分数阶导数及其性质

α 阶jumarie’s修正的riemann-liouville分数阶导数定义[19]

d t α f( t )={ 1 γ( 1α ) d dt 0 t ( tξ ) α [ f( ξ )f( 0 ) ]dξ,0α<1 ( f ( n ) ( t ) ) αn ,nα<n 1,n1 (2)

这里 γ( ) 为gamma函数:

γ( x )= 0 x e t e x1 dt (3)

riemann-liouville分数阶导数性质如下:

d t α x γ = γ( 1 γ ) γ( 1 γα ) t γα ,γ>0 (4)

d t α [ f( t )g( t ) ]=f( t ) d t α g( t ) g( t ) d t α f( t ) (5)

d t α f[ g( t ) ]= f g [ g( t ) ] d t α g( t )= d g α f[ g( t ) ] ( g t ( t ) ) α (6)

3. 方法描述

考虑如下非线性分数阶偏微分方程:

f( u, d t α u, d x β u, d y γ u, d t 2α u, d t α d x β u, d x 2β u, )=0,0<α,β,γ<1 (7)

其中 d t α u, d x β u, d y γ u u关于 x,y,t 的分数阶导数,fu及其偏导数的多项式。

步骤1 引入复行波变换:

{ u( x,y,t )=u( ξ ) ξ= k 2 x β γ( 1 β ) k 3 y γ γ( 1 γ ) k 1 t α γ( 1 α ) (8)

其中 k 1 , k 2 , k 3 是非零常数。

将方程(8)代入方程(7)中,方程(7)转化为整数阶常微分方程:

q( u, k 1 u , k 2 u , k 3 u , k 1 k 2 u , )=0 (9)

步骤2 假设方程(9)具有下面形式的解:

u( ξ )= a 0 n=1 n ( a n ϕ n ( ξ ) b n ϕ n ( ξ ) ) (10)

其中 a n , b n ( n=1,2,,n ) 为待定常数,正整数n由平衡线性最高阶导数项和最高次幂的非线性项确定,且 ϕ=ϕ( ξ ) 满足riccati方程:

ϕ ( ξ )=σ ϕ 2 ( ξ ) (11)

其中 σ 为任意常数。

对于 ϕ ,根据常数 σ 的取值,有如下三种类型的解:

ϕ( ξ )={ σ tanh σ ξ,σ<0 σ coth σ ξ,σ<0 σ tan σ ξ,σ>0 σ cot σ ξ,σ>0 1 ξ ,σ=0 (12)

步骤3 将方程(10)和方程(11)式代入方程(9)中,令 ϕ i 的系数为零,则得到关于 a i , b i ( n=1,2,,n ) 的代数方程组,计算得到方程(7)不同类型的精确行波解。

4. 运用与结果

对方程(1)作复行波变换得:

4 k 1 k 2 u k 1 3 k 2 u ( 4 ) 12 k 1 2 k 2 u u a k 1 2 u =0 (13)

方程(13)两边关于 ξ 积分一次,可得:

( 4 k 3 a k 1 ) u k 1 2 k 2 u 6 k 1 k 2 u 2 =0 (14)

由(14)中的最高阶导数项和最高次幂的非线性项,有 n=1 ,因此方程(10)转化为:

u( ξ )= a 0 a 1 ϕ( ξ ) b 1 ϕ 1 ( ξ ) (15)

将方程(11)和(15)一起代入方程(10),后令 ϕ i 的系数为0,可得以 a 0 , a 1 , b 1 为未知数的代数方程组:

{ 6 k 1 2 k 2 a 1 6 k 1 k 2 a 1 2 =0 8 k 1 2 k 2 a 1 12 k 1 k 2 ( a 1 σ b 1 ) a 1 ( 4 k 3 a k 1 ) a 1 =0 ( 4 k 3 a k 1 )( a 1 σ b 1 ) k 1 2 k 2 ( 2 a 1 σ 2 2 b 1 σ ) 6 k 1 k 2 ( a 1 2 ϕ 2 b 1 4 a 1 b 1 ϕ )=0 ( 4 k 3 a k 1 ) b 1 ϕ8 k 1 2 k 2 b 1 ϕ 2 12 k 1 k 2 ( a 1 σ b 1 ) b 1 ϕ=0 6 k 1 2 k 2 b 1 ϕ 3 6 k 1 k 2 b 1 2 ϕ 2 =0 (16)

用maple求解该方程组可得:

a 0 = a 0 , a 1 = k 1 , b 1 =0,σ= 4 k 3 a k 1 4 k 1 2 k 2 (17)

a 0 = a 0 , a 1 =0, b 1 = 4 k 3 a k 1 4 k 1 k 2 ,σ= 4 k 3 a k 1 4 k 1 2 k 2 (18)

a 0 = a 0 , a 1 = k 1 , b 1 = 4 k 3 a k 1 16 k 1 k 2 ,σ= 4 k 3 a k 1 16 k 1 2 k 2 (19)

情形1 当 σ<0 时,方程(1)有如下形式的孤立波解:

u 1 ( ξ )= a 0 ± 4 k 3 a k 1 4 k 2 tanh 4 k 3 a k 1 4 k 1 2 k 2 ξ (20)

u 2 ( ξ )= a 0 ± 4 k 3 a k 1 4 k 2 coth 4 k 3 a k 1 4 k 1 2 k 2 ξ (21)

u 3 ( ξ )= a 0 ± 4 k 3 a k 1 16 k 2 ( tanh 4 k 3 a k 1 16 k 1 2 k 2 ξcoth 4 k 3 a k 1 16 k 1 2 k 2 ξ ) (22)

情形2 当 σ>0 时,方程(1)有如下形式的周期波解:

u 4 ( ξ )= a 0 ± 4 k 3 a k 1 4 k 2 tan 4 k 3 a k 1 4 k 1 2 k 2 ξ (23)

u 5 ( ξ )= a 0 ± 4 k 3 a k 1 4 k 2 cot 4 k 3 a k 1 4 k 1 2 k 2 ξ (24)

u 6 ( ξ )= a 0 ± 4 k 3 a k 1 16 k 2 ( tan 4 k 3 a k 1 16 k 1 2 k 2 ξcot 4 k 3 a k 1 16 k 1 2 k 2 ξ ) (25)

情形3 当 σ=0 时,方程(1)有如下形式的有理函数解:

u 6 ( ξ )= a 0 k 1 ξ (26)

为加深对解的结构理解,运用maple软件作出部分解的三维图,如下图1图2分别表示孤立波解 u 1 ( ξ ) u 2 ( ξ ) 。如下图3图4分别表示周期波解 u 4 ( ξ ) u 5 ( ξ )

figure 1. solitary wave solution u 1 ( ξ )

1. 孤立波解 u 1 ( ξ )

figure 2. solitary wave solution u 2 ( ξ )

2. 孤立波解 u 2 ( ξ )

figure 3. periodic wave solution u 4 ( ξ )

3. 周期波解 u 4 ( ξ )

figure 4. periodic wave solution u 5 ( ξ )

4. 周期波解 u 5 ( ξ )

5. 结论

本文考虑求解了(2 1)维空时分数阶akns方程。通过riemann-liouville分数阶导数和复行波变换相结合,将(2 1)维空时分数阶akns方程简化为一个常微分方程,利用扩展的tanh-函数展开法得到其系列新精确解。借助maple软件作出部分解的三维图,这些三维图的生成对于进一步分析、深入理解和构建孤立波在光纤中传输的演化过程具有显著帮助。结果表明,该方法简洁有效,能够用来求解一类的非线性分数阶偏方程。

参考文献

[1] li, z., huang, c. and wang, b. (2023) phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the fokas-lenells equation with cubic-quartic dispersion in optical fibers. physics letters a, 465, article 128714.
[2] wang, h., chen, l. and wang, h. (2016) exact travelling wave solutions of the modified equal width equation via the dynamical system method. nonlinear analysis and differential equations, 4, 9-15.
[3] saleh, r., kassem, m. and mabrouk, s.m. (2019) exact solutions of nonlinear fractional order partial differential equations via singular manifold method. chinese journal of physics, 61, 290-300.
[4] 樊露露, 套格图桑. 广义(3 1)维浅水波方程的painlevé可积与新的复合解[j]. 内蒙古师范大学学报(自然科学汉文版), 2022, 51(3): 325-330.
[5] hosseini, k., mayeli, p., bekir, a. and guner, o. (2018) density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions. communications in theoretical physics, 69, article no. 1.
[6] korkmaz, a. (2017) explicit exact solutions to some one-dimensional conformable time fractional equations. waves in random and complex media, 29, 124-137.
[7] khater, m.m.a. and kumar, d. (2017) new exact solutions for the time fractional coupled boussinesq-burger equation and approximate long water wave equation in shallow water. journal of ocean engineering and science, 2, 223-228.
[8] wazwaz, a. (2016) a new integrable (2 1)-dimensional generalized breaking soliton equation: n-soliton solutions and traveling wave solutions. communications in theoretical physics, 66, 385-388.
[9] belobo, d.b. and das, t. (2017) solitary and jacobi elliptic wave solutions of the generalized benjamin-bona-mahony equation. communications in nonlinear science and numerical simulation, 48, 270-277.
[10] alquran, m. and jarrah, a. (2019) jacobi elliptic function solutions for a two-mode kdv equation. journal of king saud universityscience, 31, 485-489.
[11] 杜兴华. (2 1)维广义calogero-bogoyavlenskii-schiff方程的所有单行波解的分类、表示及分叉行为[j]. 东北石油大学学报, 2017, 41(3): 111-116.
[12] 刘成仕. 试探方程法及其在非线性发展方程中的应用[j]. 物理学报, 2005, 54(6): 2505-2509.
[13] ali, k.k., nuruddeen, r.i. and raslan, k.r. (2018) new structures for the space-time fractional simplified mch and srlw equations. chaos, solitons & fractals, 106, 304-309.
[14] tariq, h. and akram, g. (2017) new approach for exact solutions of time fractional cahn-allen equation and time fractional phi-4 equation. physica a: statistical mechanics and its applications, 473, 352-362.
[15] raslan, k., ali, k. and shallal, m. (2017) solving the space-time fractional rlw and mrlw equations using modified extended tanh method with the riccati equation. british journal of mathematics & computer science, 21, 1-15.
[16] güner, ö., bekir, a. and karaca, f. (2016) optical soliton solutions of nonlinear evolution equations using ansatz method. optik, 127, 131-134.
[17] zayed, e.m.e., amer, y.a. and shohib, r.m.a. (2016) the fractional complex transformation for nonlinear fractional partial differential equations in the mathematical physics. journal of the association of arab universities for basic and applied sciences, 19, 59-69.
[18] yaslan, h.c. and girgin, a. (2018) new exact solutions for the conformable space-time fractional kdv, cdg, (2 1)-dimensional cbs and (2 1)-dimensional akns equations. journal of taibah university for science, 13, 1-8.
[19] kumar, d., seadawy, a.r. and joardar, a.k. (2018) modified kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. chinese journal of physics, 56, 75-85.
为你推荐
凯发娱乐官网的友情链接
网站地图