[1]
|
polak‐witka, k., rudnicka, l., blume‐peytavi, u. and vogt, a. (2019) the role of the microbiome in scalp hair follicle biology and disease. experimental dermatology, 29, 286-294.
|
[2]
|
kumari, k.u., yadav, n.p. and luqman, s. (2022) promising essential oils/plant extracts in the prevention and treatment of dandruff pathogenesis. current topics in medicinal chemistry, 22, 1104-1133.
|
[3]
|
islam, n., leung, p.s.c., huntley, a.c. and eric gershwin, m. (2015) the autoimmune basis of alopecia areata: a comprehensive review. autoimmunity reviews, 14, 81-89.
|
[4]
|
barbosa, v., hight, r. and grullon, k. (2023) scalp infection, inflammation, and infestation. dermatologic clinics, 41, 539-545.
|
[5]
|
fung, e.s., parker, j.a. and monnot, a.d. (2023) evaluating the impact of hair care product exposure on hair follicle and scalp health. alternatives to laboratory animals, 51, 323-334.
|
[6]
|
sheth, u. and dande, p. (2020) pityriasis capitis: causes, pathophysiology, current modalities, and future approach. journal of cosmetic dermatology, 20, 35-47.
|
[7]
|
hazarika, n. (2019) acne vulgaris: new evidence in pathogenesis and future modalities of treatment. journal of dermatological treatment, 32, 277-285.
|
[8]
|
t. chiu, c., huang, s. and wang, h. (2015) a review: hair health, concerns of shampoo ingredients and scalp nourishing treatments. current pharmaceutical biotechnology, 16, 1045-1052.
|
[9]
|
cong, t., hao, d., wen, x., li, x., he, g. and jiang, x. (2019) from pathogenesis of acne vulgaris to anti-acne agents. archives of dermatological research, 311, 337-349.
|
[10]
|
aydingoz, i.e., tukenmez demirci, g., agirbasli, d., oz‐arslan, d. and yenmis, g. (2020) the investigation of the amounts and expressions of epidermal growth factor, epidermal growth factor receptor, and epidermal growth factor receptor gene polymorphisms in acne vulgaris. journal of cosmetic dermatology, 20, 346-351.
|
[11]
|
jiang, t., hu, w., zhang, s., ren, c., lin, s., zhou, z., et al. (2022) fibroblast growth factor 10 attenuates chronic obstructive pulmonary disease by protecting against glycocalyx impairment and endothelial apoptosis. respiratory research, 23, article no. 269.
|
[12]
|
song, w., wang, l., wang, l. and li, q. (2015) interplay of mir-21 and foxo1 modulates growth of pancreatic ductal adenocarcinoma. tumor biology, 36, 4741-4745.
|
[13]
|
su, z., zhang, y., cao, j., sun, y., cai, y., zhang, b., et al. (2023) hyaluronic acid-fgf2-derived peptide bioconjugates for suppression of fgfr2 and ar simultaneously as an acne antagonist. journal of nanobiotechnology, 21, article no. 55.
|
[14]
|
agamia, n.f., el mulla, k.f., alsayed, n.m., ghazala, r.m., el maksoud, r.e.a., abdelmeniem, i.m., et al. (2022) isotretinoin treatment upregulates the expression of p53 in the skin and sebaceous glands of patients with acne vulgaris. archives of dermatological research, 315, 1355-1365.
|
[15]
|
gosis, b.s., wada, s., thorsheim, c., li, k., jung, s., rhoades, j.h., et al. (2022) inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mtorc1. science, 376, article no. 8271.
|
[16]
|
lee, j., kang, h.s., park, h.y., moon, y., kang, y.n., oh, b., et al. (2017) pparα-dependent insig2a overexpression inhibits srebp-1c processing during fasting. scientific reports, 7, article no. 9958.
|
[17]
|
chen, j., lu, y., tian, m. and huang, q. (2019) molecular mechanisms of foxo1 in adipocyte differentiation. journal of molecular endocrinology, 62, r239-r253.
|
[18]
|
agamia, n.f., roshdy, o.h., abdelmaksoud, r.e., abdalla, d.m., talaat, i.m., zaki, e.i., et al. (2018) effect of oral isotretinoin on the nucleo‐cytoplasmic distribution of foxo1 and foxo3 proteins in sebaceous glands of patients with acne vulgaris. experimental dermatology, 27, 1344-1351.
|
[19]
|
li, l., lu, h., zhang, y., li, q., shi, s. and liu, y. (2022) effect of azelaic acid on psoriasis progression investigated based on phosphatidylinositol 3-kinase (pi3k)/protein kinase b (akt) signaling pathway. clinical, cosmetic and investigational dermatology, 15, 2523-2534.
|
[20]
|
melnik, b.c. (2017) p53: key conductor of all anti-acne therapies. journal of translational medicine, 15, article no. 195.
|
[21]
|
yoon, j.y., kwon, h.h., min, s.u., thiboutot, d.m. and suh, d.h. (2013) epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting p. acnes. journal of investigative dermatology, 133, 429-440.
|
[22]
|
kwon, h.h., yoon, j.y., park, s.y., min, s., kim, y., park, j.y., et al. (2015) activity-guided purification identifies lupeol, a pentacyclic triterpene, as a therapeutic agent multiple pathogenic factors of acne. journal of investigative dermatology, 135, 1491-1500.
|
[23]
|
clavaud, c., jourdain, r., bar-hen, a., tichit, m., bouchier, c., pouradier, f., et al. (2013) dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. plos one, 8, e58203.
|
[24]
|
lin, q., panchamukhi, a., li, p., shan, w., zhou, h., hou, l., et al. (2020) malassezia and staphylococcus dominate scalp microbiome for seborrheic dermatitis. bioprocess and biosystems engineering, 44, 965-975.
|
[25]
|
liang, n., yang, y., li, w., wu, y., zhang, z., luo, y., et al. (2017) overexpression of nlrp3, nlrc4 and aim2 inflammasomes and their priming‐associated molecules (tlr2, tlr4, dectin‐1, dectin‐2 and nf-κb) in malassezia folliculitis. mycoses, 61, 111-118.
|
[26]
|
ortega-peña, s., martínez-garcía, s., rodríguez-martínez, s., cancino-diaz, m.e. and cancino-diaz, j.c. (2019) overview of staphylococcus epidermidis cell wall-anchored proteins: potential targets to inhibit biofilm formation. molecular biology reports, 47, 771-784.
|
[27]
|
zipperer, a., konnerth, m.c., laux, c., berscheid, a., janek, d., weidenmaier, c., et al. (2016) human commensals producing a novel antibiotic impair pathogen colonization. nature, 535, 511-516.
|
[28]
|
tsai, w., fang, y., huang, t., chiang, y., lin, c. and chang, w. (2023) heat-killed lacticaseibacillus paracasei gmnl-653 ameliorates human scalp health by regulating scalp microbiome. bmc microbiology, 23, article no. 121.
|
[29]
|
catinean, a., neag, m.a., muntean, d.m., bocsan, i.c. and buzoianu, a.d. (2018) an overview on the interplay between nutraceuticals and gut microbiota. peerj, 6, e4465.
|
[30]
|
dimidi, e. and whelan, k. (2020) food supplements and diet as treatment options in irritable bowel syndrome. neurogastroenterology & motility, 32, e13951.
|
[31]
|
zhang, b., luo, p., sun, j., li, d., liu, z., liu, x., et al. (2022) the epidermal barrier structure and function of re-harvested skin from non-scalp donor sites. journal of investigative surgery, 36, 1-7.
|
[32]
|
runtsch, m.c., angiari, s., hooftman, a., wadhwa, r., zhang, y., zheng, y., et al. (2022) itaconate and itaconate derivatives target jak1 to suppress alternative activation of macrophages. cell metabolism, 34, 487-501.e8.
|
[33]
|
konger, r.l., derr-yellin, e., zimmers, t.a., katona, t., xuei, x., liu, y., et al. (2021) epidermal pparγ is a key homeostatic regulator of cutaneous inflammation and barrier function in mouse skin. international journal of molecular sciences, 22, article no. 8634.
|
[34]
|
igawa, s., ohzono, a., pham, p., wang, z., nakatsuji, t., dokoshi, t., et al. (2021) sphingosine 1-phosphate receptor 2 is central to maintaining epidermal barrier homeostasis. journal of investigative dermatology, 141, 1188-1197.e5.
|
[35]
|
inchingolo, a.d., malcangi, g., inchingolo, a.m., piras, f., settanni, v., garofoli, g., et al. (2022) benefits and implications of resveratrol supplementation on microbiota modulations: a systematic review of the literature. international journal of molecular sciences, 23, article no. 4027.
|
[36]
|
jing, r., fu, m., huang, y., zhang, k., ye, j., gong, f., et al. (2024) oat β‐glucan repairs the epidermal barrier by upregulating the levels of epidermal differentiation, cell-cell junctions and lipids via dectin‐1. british journal of pharmacology, 181, 1596-1613.
|
[37]
|
chen, t., zhang, x., zhu, g., liu, h., chen, j., wang, y., et al. (2020) quercetin inhibits tnf-α induced huvecs apoptosis and inflammation via downregulating nf-κb and ap-1 signaling pathway in vitro. medicine, 99, e22241.
|
[38]
|
goryachkina, v.l., ivanova, m.y., tsomartova, d.a., et al. (2014) regulation of hair follicle cycle. morfologiia, 146, 83-87.
|
[39]
|
ito, t., ito, n., saatoff, m., hashizume, h., fukamizu, h., nickoloff, b.j., et al. (2008) maintenance of hair follicle immune privilege is linked to prevention of nk cell attack. journal of investigative dermatology, 128, 1196-1206.
|
[40]
|
zhou, l., wang, h., jing, j., yu, l., wu, x. and lu, z. (2018) regulation of hair follicle development by exosomes derived from dermal papilla cells. biochemical and biophysical research communications, 500, 325-332.
|
[41]
|
gupta, a.k., talukder, m. and williams, g. (2022) comparison of oral minoxidil, finasteride, and dutasteride for treating androgenetic alopecia. journal of dermatological treatment, 33, 2946-2962.
|
[42]
|
lee, y.h., choi, h., kim, j.y., kim, j., lee, j., cho, s., et al. (2021) ginsenoside rg4 enhances the inductive effects of human dermal papilla spheres on hair growth via the akt/gsk-3β/β-catenin signaling pathway. journal of microbiology and biotechnology, 31, 933-941.
|
[43]
|
jung, y.h., chae, c.w., choi, g.e., shin, h.c., lim, j.r., chang, h.s., et al. (2022) cyanidin 3-o-arabinoside suppresses dht-induced dermal papilla cell senescence by modulating p38-dependent er-mitochondria contacts. journal of biomedical science, 29, article no. 17.
|
[44]
|
hibino, t. and nishiyama, t. (2004) role of tgf-beta2 in the human hair cycle. journal of dermatological science, 35, 9-18.
|
[45]
|
flores, a., schell, j., krall, a.s., jelinek, d., miranda, m., grigorian, m., et al. (2017) lactate dehydrogenase activity drives hair follicle stem cell activation. nature cell biology, 19, 1017-1026.
|
[46]
|
sotiropoulou, p.a., karambelas, a.e., debaugnies, m., candi, a., bouwman, p., moers, v., et al. (2012) brca1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. genes & development, 27, 39-51.
|
[47]
|
matsumura, h., mohri, y., binh, n.t., morinaga, h., fukuda, m., ito, m., et al. (2016) hair follicle aging is driven by transepidermal elimination of stem cells via col17a1 proteolysis. science, 351, 559-600.
|