[1]
|
saravanan, c., et al. (2015) effect of particulate reinforced aluminium metal matrix composite—a review. mechanics and mechanical engineering, 19, 23-30.
|
[2]
|
su, y., ouyang, q., zhang, w., li, z., guo, q., fan, g., et al. (2014) composite structure modeling and mechanical behavior of particle reinforced metal matrix composites. materials science and engineering: a, 597, 359-369.
|
[3]
|
ozden, s., ekici, r. and nair, f. (2007) investigation of impact behaviour of aluminium based sic particle reinforced metal-matrix composites. composites part a: applied science and manufacturing, 38, 484-494.
|
[4]
|
jagadeesh, g.v. and gangi setti, s. (2020) a review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites. journal of materials science, 55, 9848-9882.
|
[5]
|
zhang, j., zheng, z., huang, k., lin, c., huang, w., chen, x., et al. (2024) field-assisted machining of difficult-to-machine materials. international journal of extreme manufacturing, 6, article id: 032002.
|
[6]
|
sahoo, b.p., das, d. and chaubey, a.k. (2021) strengthening mechanisms and modelling of mechanical properties of submicron-tib2 particulate reinforced al 7075 metal matrix composites. materials science and engineering: a, 825, article id: 141873.
|
[7]
|
samal, p., vundavilli, p.r., meher, a. and mahapatra, m.m. (2020) recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. journal of manufacturing processes, 59, 131-152.
|
[8]
|
yan, c., lifeng, w. and jianyue, r. (2008) multi-functional sic/al composites for aerospace applications. chinese journal of aeronautics, 21, 578-584.
|
[9]
|
武高辉. 一种3d打印用sicp/al复合材料粉末的制备方法[p]. 中国专利, 202110161449.6. 2022-02-01.
|
[10]
|
liu, d., zhang, s.q., li, a. and wang, h.m. (2009) microstructure and tensile properties of laser melting deposited tic/ta15 titanium matrix composites. journal of alloys and compounds, 485, 156-162.
|
[11]
|
韩龙. 基于3d打印预制体的zro2/al-mg复合材料制备工艺研究[d]: [硕士学位论文]. 兰州: 兰州理工大学, 2020.
|
[12]
|
张力, 杨现锋, 徐协文, 等. 熔融沉积法3d打印制备氧化锆陶瓷及其力学性能研究[j]. 无机材料学报, 2021, 36(4): 436-442.
|
[13]
|
杨建明, 汤阳, 顾海, 等. 3d打印制备多孔结构的研究与应用现状[j]. 材料导报, 2018, 32(15): 2672-2682.
|
[14]
|
第五届全国快速成形与制造学术会议在西安召开[j]. 电加工与模具, 2011(3): 63.
|
[15]
|
yu, w.h., sing, s.l., chua, c.k., kuo, c.n. and tian, x.l. (2019) particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. progress in materials science, 104, 330-379.
|
[16]
|
申琦, 余森, 牛金龙, 等. 选区激光熔化制备镁基材料研究进展[j]. 材料导报, 2019, 33(s1): 278-282.
|
[17]
|
常成, 郭一帆, 卓伟伟, 等. 激光选区熔化适配型铝合金的研究及应用现状[j]. 中国有色金属学报, 2024, 34(8): 2491-2510.
|
[18]
|
张莎莎. tic颗粒增强316l不锈钢复合材料slm制备及性能研究[d]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2019.
|
[19]
|
zhao, s., shen, x., yang, j., teng, w. and wang, y. (2018) densification behavior and mechanical properties of nanocrystalline tic reinforced 316l stainless steel composite parts fabricated by selective laser melting. optics & laser technology, 103, 239-250.
|
[20]
|
付旺琪, 钱波, 刘志远, 等. slm碳化钒颗粒强化316l不锈钢的点阵结构及性能[j]. 激光与光电子学进展, 2019, 56(24): 155-161.
|
[21]
|
蒋佳斌, 谢德巧, 周凯, 等. 激光选区熔化成形lab6增强316l不锈钢的组织及力学性能[j]. 南京航空航天大学学报, 2021, 53(1): 85-92.
|
[22]
|
周燕, 段隆臣, 吴雪良, 等. 粉末粒径对激光选区熔化成形s136模具钢的磨损与抗腐蚀性能的影响[j]. 激光与光电子学进展, 2018, 55(10): 205-211.
|
[23]
|
胡辉, 周燕, 文世峰, 等. 激光选区熔化成形tib2增强s136模具钢[j]. 中国激光, 2018, 45(12): 131-140.
|
[24]
|
程灵钰. slm制备不锈钢与纳米羟基磷灰石复合材料研究[d]: [硕士学位论文]. 武汉: 华中科技大学, 2014.
|
[25]
|
洪旭潮, 刘允中, 黄斌. 激光选区熔化成形tic/sic协同增强铝基复合材料的组织性能与强化机制[j]. 中国有色金属学报, 2021, 31(9): 2436-2446.
|
[26]
|
廉清, 吴一, 王浩伟, 等. tib2增强al-si复合材料激光增材制造工艺及性能研究[j]. 热加工工艺, 2017, 46(22): 113-117.
|
[27]
|
astfalck, l.c., kelly, g.k., li, x. and sercombe, t.b. (2017) on the breakdown of sic during the selective laser melting of aluminum matrix composites. advanced engineering materials, 19, article id: 1600835.
|
[28]
|
gu, d., wang, h., chang, f., dai, d., yuan, p., hagedorn, y., et al. (2014) selective laser melting additive manufacturing of tic/alsi10mg bulk-form nanocomposites with tailored microstructures and properties. physics procedia, 56, 108-116.
|
[29]
|
邹田春, 祝贺, 陈敏英, 等. 激光选区熔化碳化硅增强铝基复合材料的微观组织及拉伸性能研究[j]. 中国激光, 2021, 48(10): 231-239.
|
[30]
|
陈帅, 刘建光, 王卫东, 等. tib2/alsi10mg激光选区熔化成形工艺研究[j]. 精密成形工程, 2021, 13(3): 154-161.
|
[31]
|
薛刚, 朱海红, 柯林达, 等. sic含量对激光选区熔化制备sicp/alsi10mg复合材料组织与性能的影响[j]. 热加工工艺, 2021, 50(10): 62-66.
|
[32]
|
刘宇轩, 王日初, 蔡志勇, 等. sc元素对激光选区熔化tib2/alsi10mg复合材料组织和性能的影响[j]. 金属热处理, 2020, 45(8): 56-63.
|
[33]
|
沈君剑, 刘允中, 欧阳盛, 等. 激光选区熔化成形tib2与sic颗粒混杂增强铝基复合材料的显微组织与力学性能[j]. 粉末冶金材料科学与工程, 2020, 25(3): 251-259.
|
[34]
|
欧阳盛, 刘允中, 沈君剑, 等. (tih2 tib2)/aa7075复合粉末激光选区熔化成形的显微组织与力学性能[j]. 粉末冶金材料科学与工程, 2020, 25(3): 197-205.
|
[35]
|
邰鹤立, 坚增运. sicp/alsi10mg激光选区熔化成形组织及性能研究[j]. 西安工业大学学报, 2020, 40(1): 64-69, 81.
|
[36]
|
gu, d., hagedorn, y., meiners, w., wissenbach, k. and poprawe, r. (2011) nanocrystalline tic reinforced ti matrix bulk-form nanocomposites by selective laser melting (slm): densification, growth mechanism and wear behavior. composites science and technology, 71, 1612-1620.
|
[37]
|
gu, d., meng, g., li, c., meiners, w. and poprawe, r. (2012) selective laser melting of tic/ti bulk nanocomposites: influence of nanoscale reinforcement. scripta materialia, 67, 185-188.
|
[38]
|
xia, m., liu, a., wang, h., lin, y., li, n., zhang, m., et al. (2019) microstructure evolution and its effect on mechanical response of the multi-phase reinforced ti-based composites by laser powder-bed fusion. journal of alloys and compounds, 782, 506-515.
|
[39]
|
李闯, 顾冬冬, 沈以赴, 等. slm制备ticx/ti纳米复合材料的致密化及显微组织[j]. 中国有色金属学报, 2011, 21(7): 1554-1561.
|
[40]
|
彭斌意, 刘洋, 郑晓董, 等. 激光选区熔化颗粒增强钛基复合材料的抗压性能[j]. 材料工程, 2022, 50(6): 36-48.
|
[41]
|
attar, h., bönisch, m., calin, m., zhang, l., scudino, s. and eckert, j. (2014) selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties. acta materialia, 76, 13-22.
|
[42]
|
jia, q. and gu, d. (2014) selective laser melting additive manufacturing of tic/inconel 718 bulk-form nanocomposites: densification, microstructure, and performance. journal of materials research, 29, 1960-1969.
|
[43]
|
曹聪帅. 激光熔注wc/ni基复合材料层制备工艺及组织性能研究[d]: [硕士学位论文]. 武汉: 华中科技大学, 2016.
|
[44]
|
nguyen, q.b., zhu, z., chua, b.w., zhou, w., wei, j. and nai, s.m.l. (2018) development of wc-inconel composites using selective laser melting. archives of civil and mechanical engineering, 18, 1410-1420.
|
[45]
|
肖纬汗. 3d打印石墨烯/inconel 718复合材料的组织与性能研究[d]: [硕士学位论文]. 南昌: 南昌航空大学, 2017.
|
[46]
|
褚清坤, 余春风, 邓朝阳, 等. tic含量对激光选区熔化inconel 625合金微观组织及表面摩擦磨损性能的影响[j]. 中国表面工程, 2021, 34(1): 76-84.
|
[47]
|
miracle, d.b. and senkov, o.n. (2017) a critical review of high entropy alloys and related concepts. acta materialia, 122, 448-511.
|
[48]
|
otto, f., dlouhý, a., somsen, c., bei, h., eggeler, g. and george, e.p. (2013) the influences of temperature and microstructure on the tensile properties of a cocrfemnni high-entropy alloy. acta materialia, 61, 5743-5755.
|
[49]
|
gu, d.d., meiners, w., wissenbach, k. and poprawe, r. (2012) laser additive manufacturing of metallic components: materials, processes and mechanisms. international materials reviews, 57, 133-164.
|
[50]
|
ocelík, v., janssen, n., smith, s.n. and de hosson, j.t.m. (2016) additive manufacturing of high-entropy alloys by laser processing. jom, 68, 1810-1818.
|
[51]
|
sun, z., tan, x., tor, s.b. and chua, c.k. (2018) simultaneously enhanced strength and ductility for 3d-printed stainless steel 316l by selective laser melting. npg asia materials, 10, 127-136.
|
[52]
|
zhu, z.g., nguyen, q.b., et al. (2018) hierarchical microstructure and strengthening mechanisms of a cocrfenimn high entropy alloy additively manufactured by selective laser melting. scripta materialia, 154, 20-24.
|
[53]
|
yevgeni, b., meurig, t. and iain, t. (2014) the use of high-entropy alloys in additive manufacturing. scripta materialia, 99, 93-96.
|
[54]
|
li, r., niu, p., yuan, t., cao, p., chen, c. and zhou, k. (2018) selective laser melting of an equiatomic cocrfenimn high-entropy alloy: processability, non-equilibrium microstructure and mechanical property. journal of alloys and compounds, 746, 125-134.
|
[55]
|
zhou, y., zhang, z., wang, y., et al. (2018) selective laser melting of typical metallic materials: an effective process prediction model developed by energy absorption and consumption analysis. additive manufacturing, 25, 204-217.
|
[56]
|
li, b., zhang, l. and yang, b. (2020) grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting. composites communications, 19, 56-60.
|
[57]
|
li, b., qian, b., xu, y., liu, z. and xuan, f. (2019) fine-structured cocrfenimn high-entropy alloy matrix composite with 12 wt% tin particle reinforcements via selective laser melting assisted additive manufacturing. materials letters, 252, 88-91.
|
[58]
|
sanaty-zadeh, a. (2012) comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of hall-petch effect. materials science and engineering: a, 531, 112-118.
|
[59]
|
zhang, z., ma, p., fang, y., yang, z., zhang, n., prashanth, k.g., et al. (2023) effect of nicofealti high entropy intermetallic reinforcement particle size on the microstructure and mechanical properties of cocrfemnni high-entropy alloy composites fabricated by selective laser melting. journal of alloys and compounds, 947, article id: 169417.
|