[1]
|
zhu, y., fu, n., li, d., wang, l. and chen, x.d. (2017) physical and viscoelastic properties of different moisture content highland barley kernels. international journal of food engineering, 13, article id: 20170186.
|
[2]
|
lu, l., ding, s., lu, w., shao, q. and huang, z. (1995) chinese hordeum vulgare. china agriculture press.
|
[3]
|
feng, x., wang, g. and wang, j. (2018) space distribution of highland barley gns and its relationship with environmental factors in the qinghai-tibet plateau. american journal of biochemistry and biotechnology, 14, 137-144.
|
[4]
|
zhang, f., yang, y., zhao, g.h. and kan, j.q. (2003) advance on β-glucan from hull-less barley. journal of cereals and oils, 12.
|
[5]
|
陶瑾, 张莉方, 徐宁莉, 等. 青稞蛋白降血糖肽的纯化、结构鉴定及体外降血糖和抗氧化活性[j]. 中国粮油学报, 2023, 38(11): 92-99.
|
[6]
|
moza, j. and gujral, h.s. (2016) starch digestibility and bioactivity of high altitude hulless barley. food chemistry, 194, 561-568.
|
[7]
|
刘佳慈. 青稞β-葡聚糖对血糖及肠道菌群的影响研究[d]: [硕士学位论文]. 大庆: 黑龙江八一农垦大学, 2023.
|
[8]
|
李世超. 青稞β-葡聚糖对dss诱导小鼠结肠炎的调节作用[d]: [硕士学位论文]. 南京: 南京农业大学, 2021.
|
[9]
|
ahmed, m. (2020) colon cancer: a clinician’s perspective in 2019. gastroenterology research, 13, 1-10.
|
[10]
|
余勤业, 吴彤, 罗颖婷, 等. 青稞功能成分与生物活性研究进展[j]. 食品工业科技, 2021, 42(5): 357-362, 368.
|
[11]
|
张晖, 朱玲, 陈晓宇. 青稞: 一种潜在的辅助降血糖食品资源[j]. 粮油食品科技, 2022, 30(2): 1-7, 11.
|
[12]
|
戎银秀. 青稞β-葡聚糖的制备、结构解析及其降血脂活性的研究[d]: [硕士学位论文]. 苏州: 苏州大学, 2018.
|
[13]
|
lopez-sanchez, p., wang, d., zhang, z., flanagan, b. and gidley, m.j. (2016) microstructure and mechanical properties of arabinoxylan and (1,3; 1,4)-β-glucan gels produced by cryo-gelation. carbohydrate polymers, 151, 862-870.
|
[14]
|
yang, j., kim, y., lee, h., lee, m. and moon, y.k. (2003) barley β-glucan lowers serum cholesterol based on the up-regulation of cholesterol 7α-hydroxylase activity and mrna abundance in cholesterol-fed rats. journal of nutritional science and vitaminology, 49, 381-387.
|
[15]
|
陈晨, 何蒙蒙, 吴泽蓉, 等. 青稞β-葡聚糖的研究现状与展望[j]. 中国食品添加剂, 2020, 31(2): 172-177.
|
[16]
|
guo, h., lin, s., lu, m., gong, j.d.b., wang, l., zhang, q., et al. (2018) characterization, in vitro binding properties, and inhibitory activity on pancreatic lipase of β-glucans from different qingke (tibetan hulless barley) cultivars. international journal of biological macromolecules, 120, 2517-2522.
|
[17]
|
zeng, y., pu, x., du, j., yang, x., li, x., mandal, m.s.n., et al. (2020) molecular mechanism of functional ingredients in barley to combat human chronic diseases. oxidative medicine and cellular longevity, 2020, article id: 3836172.
|
[18]
|
杨希娟, 党斌, 徐菲, 等. 不同粒色青稞酚类化合物含量与抗氧化活性的差异及评价[j]. 中国粮油学报, 2017, 32(9): 34-42.
|
[19]
|
zhu, y., li, t., fu, x., abbasi, a.m., zheng, b. and liu, r.h. (2015) phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (hordeum vulgare l.). journal of functional foods, 19, 439-450.
|
[20]
|
shen, y., zhang, h., cheng, l., wang, l., qian, h. and qi, x. (2016) in vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. food chemistry, 194, 1003-1012.
|
[21]
|
郭效瑛, 赵曼. 青稞保健功能产品开发研究国内现状[j]. 农产品加工(下半月), 2018(10): 57-61, 65.
|
[22]
|
阚建全, 洪晴悦. 青稞生物活性成分及其生理功能研究进展[j]. 食品科学技术学报, 2020, 38(6): 11-20.
|
[23]
|
张昱. 青稞麦绿素对小鼠免疫性肝损伤的保护作用[j]. 青海师范大学学报(自然科学版), 2013, 29(2): 48-52.
|
[24]
|
王梦倩, 孙颖, 邵丹青, 等. 青稞的营养价值和功效作用研究现状[j]. 食品研究与开发, 2020, 41(23): 206-211.
|
[25]
|
ribas-agustí, a., martín-belloso, o., soliva-fortuny, r. and elez-martínez, p. (2017) food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. critical reviews in food science and nutrition, 58, 2531-2548.
|
[26]
|
law, m.r., wald, n.j. and thompson, s.g. (1994) by how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? bmj, 308, 367-372.
|
[27]
|
陈东方, 张聪恪, 李立, 等. 青稞提取物对高脂血症人群降血脂功能研究[j]. 实用预防医学, 2011, 18(3): 525-527.
|
[28]
|
熊茉君, 张红霞, 陈瑾. 青稞降血脂、减肥的临床观察[j]. 中国西部科技, 2005(9): 45.
|
[29]
|
xia, x., li, g., ding, y., ren, t., zheng, j. and kan, j. (2017) effect of whole grain qingke (tibetan hordeum vulgare l. zangqing 320) on the serum lipid levels and intestinal microbiota of rats under high-fat diet. journal of agricultural and food chemistry, 65, 2686-2693.
|
[30]
|
xia, x., li, g., song, j., zheng, j. and kan, j. (2018) hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet. british journal of nutrition, 119, 1102-1110.
|
[31]
|
gong, l., gong, l. and zhang, y. (2014) intake of tibetan hull-less barley is associated with a reduced risk of metabolic related syndrome in rats fed high-fat-sucrose diets. nutrients, 6, 1635-1648.
|
[32]
|
中华人民共和国国家卫生健康委员会. 成人糖尿病食养指南(2023年版) [j]. 全科医学临床与教育, 2023, 21(5): 388-391.
|
[33]
|
yan, w., yao, h., nie, s. and li, y. (2016) mineral analysis of hulless barley grown in different areas and its β-glucan concentrates. cogent food & agriculture, 2, article id: 1186139.
|
[34]
|
moza, j. and gujral, h.s. (2017) influence of non-starchy polysaccharides on barley milling behavior and evaluating bioactive composition of milled fractions. food chemistry, 218, 137-143.
|
[35]
|
idehen, e., tang, y. and sang, s. (2017) bioactive phytochemicals in barley. journal of food and drug analysis, 25, 148-161.
|
[36]
|
liu, l., wang, x., li, y. and sun, c. (2015) postprandial differences in the amino acid and biogenic amines profiles of impaired fasting glucose individuals after intake of highland barley. nutrients, 7, 5556-5571.
|
[37]
|
aoe, s., ichinose, y., kohyama, n., komae, k., takahashi, a., abe, d., et al. (2017) effects of high β-glucan barley on visceral fat obesity in japanese individuals: a randomized, double-blind study. nutrition, 42, 1-6.
|
[38]
|
liu, r., zhao, j., guo, j., liu, x., yu, j., wang, h., et al. (2019) postprandial metabolomics: gc-ms analysis reveals differences in organic acid profiles of impaired fasting glucose individuals in response to highland barley loads. food & function, 10, 1552-1562.
|
[39]
|
miyamoto, j., watanabe, k., taira, s., kasubuchi, m., li, x., irie, j., et al. (2018) barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. plos one, 13, e0196579.
|
[40]
|
deng, n., zheng, b., li, t. and liu, r.h. (2020) assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (hordeum vulgare l.) varieties. international journal of molecular sciences, 21, article 1175.
|
[41]
|
vinayagam, r., jayachandran, m. and xu, b. (2015) antidiabetic effects of simple phenolic acids: a comprehensive review. phytotherapy research, 30, 184-199.
|
[42]
|
koene, r.j., prizment, a.e., blaes, a. and konety, s.h. (2016) shared risk factors in cardiovascular disease and cancer. circulation, 133, 1104-1114.
|
[43]
|
piché, m., tchernof, a. and després, j. (2020) obesity phenotypes, diabetes, and cardiovascular diseases. circulation research, 126, 1477-1500.
|
[44]
|
(2003) diet, nutrition and the prevention of chronic diseases. world health organization technical report series.
|
[45]
|
wang, h., wang, y., shi, z., zhao, l., jian, w., li, k., et al. (2023) association between dietary patterns and metabolic syndrome and modification effect of altitude: a cohort study of tibetan adults in china. nutrients, 15, article 2226.
|
[46]
|
li, k., zhang, h.d., jian, w.x., et al. (2023) prevalence of obesity and its association with dietary patterns: a cohort study among tibetan pastoralists in qinghai province. chinese journal of epidemiology, 44, 1257-1263.
|
[47]
|
evans, c.e.l., greenwood, d.c., threapleton, d.e., cleghorn, c.l., nykjaer, c., woodhead, c.e., et al. (2015) effects of dietary fibre type on blood pressure: a systematic review and meta-analysis of randomized controlled trials of healthy individuals. journal of hypertension, 33, 897-911.
|
[48]
|
behall, k.m., scholfield, d.j. and hallfrisch, j. (2006) whole-grain diets reduce blood pressure in mildly hypercholesterolemic men and women. journal of the american dietetic association, 106, 1445-1449.
|
[49]
|
timmis, a., townsend, n., gale, c.p., torbica, a., lettino, m., petersen, s.e., et al. (2019) european society of cardiology: cardiovascular disease statistics 2019. european heart journal, 41, 12-85.
|
[50]
|
liao, z., cai, h., xu, z., wang, j., qiu, c., xie, j., et al. (2018) protective role of antioxidant huskless barley extracts on tnf‐α‐induced endothelial dysfunction in human vascular endothelial cells. oxidative medicine and cellular longevity, 2018, article id: 3846029.
|
[51]
|
ganesan, k., du, b. and chen, j. (2022) effects and mechanisms of dietary bioactive compounds on breast cancer prevention. pharmacological research, 178, article id: 105974.
|
[52]
|
cite food and drug administration, hhs (2008) food labeling: health claims; soluble fiber from certain foods and risk of coronary heart disease. federal register, 73, 23947-13953.
|
[53]
|
ho, h.v.t., sievenpiper, j.l., zurbau, a., mejia, s.b., jovanovski, e., au-yeung, f., et al. (2016) a systematic review and meta-analysis of randomized controlled trials of the effect of barley β-glucan on ldl-c, non-hdl-c and apob for cardiovascular disease risk reductioni-iv. european journal of clinical nutrition, 70, 1239-1245.
|
[54]
|
wang, y., ames, n.p., tun, h.m., tosh, s.m., jones, p.j. and khafipour, e. (2016) high molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. frontiers in microbiology, 7, article 129.
|
[55]
|
iyer, u. and venugopal, s. (2010) management of diabetic dyslipidemia with subatmospheric dehydrated barley grass powder. international journal of green pharmacy, 4, article 251.
|